

 ���
���
���

��
��
��FASTSERIES

USER’S MANUAL

JPEG 2000 Encoder

30002-00281

ALACRON JPEG2000 ENCODER

Page 2 of 2

COPYRIGHT NOTICE

Copyright  2003 by Alacron Inc.
All rights reserved. This document, in whole or in part, may not be copied, photocopied,
reproduced, translated, or reduced to any other electronic medium or machine-readable form
without the express written consent of Alacron Inc.

Alacron makes no warranty for the use of its products, assumes no responsibility for any error,
which may appear in this document, and makes no commitment to update the information
contained herein. Alacron Inc. retains the right to make changes to this manual at any time
without notice.

 Document Name: ALRT RT SW Programmer’s Guide & Reference User’s Manual

 Document Number: 30002-00281

 Revision History: 1.0 December 12, 2001

 1.1 September 3, 2003

Trademarks:

Alacron is a registered trademark of Alacron Inc.
Channel Link is a trademark of National Semiconductor
CodeWarrior is a registered trademark of Metrowerks Corp.
FastChannel is a registered trademark of Alacron Inc.
FastSeries is a registered trademark of Alacron Inc.
Fast4, FastFrame 1300, FastImage, FastI/O, and FastVision are registered
trademarks of Alacron Inc.
FireWire is a registered trademark of Apple Computer Inc.
3M is a trademark of 3M Company
MS DOS is a registered trademark of Microsoft Corporation
SelectRAM is a trademark of Xilinx Inc.
Solaris is a trademark of Sun Microsystems Inc.
TriMedia is a trademark of Philips Electronics North America Corp.
Unix is a registered trademark of Sun Microsystems Inc.
Virtex is a trademark of Xilinx Inc.
Windows, Windows 95, Windows 98, Windows 2000, and Windows NT
are trademarks of Microsoft All trademarks are the property of their respective holders.

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Telephone: 603-891-2750

Fax: 603-891-2745

Web Site:
http://www.alacron.com/

Email:

sales@alacron.com, or support@alacron.com

ALACRON JPEG2000 ENCODER

Page 3 of 3

Table of Contents

1. Introduction__ 5
1.1 Purpose ___ 5
1.2 Scope ___ 5
1.3 Definitions, Acronyms and Abbreviations _______________________________________ 5
1.4 References___ 5

2. Architectural Representation ___ 5
3. General description ___ 6
4. Algorithms and Implementations __ 8

4.1 Static memory allocation ___ 8
4.2 Discrete Wavelet Transformation __ 8
4.3 Passes-based rate control algorithm __ 13
4.4 FPGA-based CBM __ 15

5. Demonstration application __ 15
6. Performance estimation features ___ 16
7. Working parameters and constants ___ 16
8. User interfaces __ 17
9. Introduction___ 20

9.1 Purpose __ 20
9.2 Definitions, Acronyms and Abbreviations ______________________________________ 20
9.3 References__ 20

10. Conditions __ 20
11. Installation and removing__ 20
12. Overview ___ 21
13. Summary of Capabilities __ 22
14. User interfaces __ 22
15. Demonstration application___ 25
16. Returned Error Codes List ___ 26
17. JPEG2000 Software Library Contents ___ 26
18. JPEG2000 Library Example Application__ 26
19. Coefficient Bit Modeling (BitPlane Scanner) Interface ______________________________ 31

19.1 Significance propagation uses (reads and updates if necessary): __________________ 32
19.2 Magnitude refinement uses (reads and updates if necessary): _____________________ 32

ALACRON JPEG2000 ENCODER

Page 4 of 4

19.3 Clean-up uses (reads and updates if necessary): ________________________________ 32
20. TROUBLESHOOTING ___ 35
21. ALACRON TECHNICAL SUPPORT __ 36

21.1 Contacting Technical Support __ 36
21.2 Returning Products for Repair or Replacements _________________________________ 37

ALACRON JPEG2000 ENCODER

Page 5 of 5

JPEG2000 Software Architecture

1. Introduction

1.1 Purpose
The document is written for engineers and developers to provide a comprehensive architectural
overview of the TriMedia oriented JPEG2000 encoder. It is intended to capture and convey the
significant architectural decisions, algorithms and implementation aspects that have been made
on the system.

1.2 Scope
This document describes software architecture of the TriMedia based JPEG2000 encoder. The
main accents were made on the algorithmic part of the application and the corresponding
implementation features.

1.3 Definitions, Acronyms and Abbreviations
J2K – TriMedia based JPEG2000 encoder

CBM – Coefficient Bit Modeling

DWT – Discrete Wavelet Transformation

1.4 References
ISO_IEC_15444-1 2000(E) – Information technology – JPEG 2000 image coding system. Part1:
Core coding system.

ISO/IEC 14492-1, Lossy/lossless coding of bi-level images, 2000.

JPEG-2000 Phase 5 Development Summary, Alarity Corp., September, 2002.

2. Architectural Representation
Represented system consists of followed basic components:

• Input file format interpreter

• DWT processor

• Rate allocation unit

• Tier-1 encoder

• Tier-2 encoder

• Output component

Input file interpreter performs input file reading and its format interpretation (currently Portable
BitMap -PBM).

DWT processor module performs irreversible (9-7) and reversible (5-3) discrete wavelet
transformations according to ISO JPEG2000 standard.

Rate allocation unit controls compression quality / compression rate and provides optimal image
quality for the preset target output file size.

ALACRON JPEG2000 ENCODER

Page 6 of 6

Tier-1 encoder implements most of the coding functionality -- bit plane encoding and entropy
arithmetic coding process.

Tier-2 encoder packages the tier-1 encoded data into data units (packets).

The output component performs output of the compressed image into output file.

3. General description
Image encoding process can be represented as shown in fig.1. It consists of five main stages:
input image processing, wavelet transform, tier-1 and tier-2 processing and output file generation.

The Input unit performs input image file reading and decoding. This module actually should be
considered as an interface module and should not be treated as a part of JPEG2000 encoder.
The only supported input format is 8 bits Portable BitMap (PBM). Any other input format may be
supported, as long as it can be converted to 8 bits unsigned input data representation for DWT
module input. This restriction comes from the finite precision arithmetic features used in DWT
module optimized implementation. To improve performance, input data dynamic range zero
centering (DC shifting procedure) was embedded into the first stage of wavelet transformation
and does not have to be implemented in the Input module.

The Discrete wavelet transformation module supports both standard wavelet filters recommended
by ISO JPEG2000 – reversible 5/3 and irreversible 9/7. All transformations are implemented in
finite precision fixed-point arithmetic and in the case of 9/7 filter implementation output data
values are scaled up by nSamplingCoefficient value (see Algorithms and implementations below).

The Tier-1 module provides encoding of resulting DWT coefficients with dynamic rate allocation
control. Tier-1 uses original Passes allocation algorithm (see Algorithms and implementations)
and implements single pass fidelity allocation method.

The Tier-module 2 performs zero-tree encoding and JPEG2000 final output stream generation.

The Output module provides the output interface and, as the input module, does not belong to the
JPEG2000 encoding algorithm.

The current software provides support of tiles processing in accordance with the requirements of
ISO/IEC 15444-1 standard. However, several restrictions were introduced for the performance
optimization reasons. Each tile component must start at even row. Width of each tile must be the
power of two.

Input DWT Tier-1 Tier-2 Output

Rate
control

Fig.1 Image encoding process

ALACRON JPEG2000 ENCODER

Page 7 of 7

In the present implementation image width, image height, tile width and tile height are defined as
compilation-time constants (Parameters.h). This allows for the more efficient memory
management (see 4.1 and 4.2 for details). The output image size (defining the compression
ratio), the type of wavelet transformation filter and the type of rate allocation variant are specified
for the encoder as external encoding parameters.

Two general modes are supported – internal tiles multiplexing (when division into tiles is
performed inside the encoder) and external multiplexing (when tile data are passed into encoder
from the outer source).

In the case when a whole image is passed for encoding, the JPEG2000_Encode function
(Encoder.c) should be called. This function accepts as inputs:

- pInputBuff - pointer to the input buffer,

- iOutputFileSize - desired size of output file,

- iTableVariant - rate allocation variant (4.3),

- iWavletTransform - wavelet transformation mode (5/3 or 9/7) ,

- pOutputBuff - pointer on the output memory buffer (buffer for output image) .

After the function invocation, the size of the encoded image is stored in pOutputDataSize value.
Compression ratio is defined implicitly by the output size of compressed image.

If necessary, division into tiles is performed inside the JPEG2000_Encode function. All tiles are
processed sequentially and the output stream for JPEG2000 file is created.

The pInputBuff pointer can be initialized to NULL value. In this case the input image is assumed
to be stored in the reserved input buffer (4.1). This feature was reserved for external to J2K
compressor input data multiplexing mechanism. If pInputBuffer is not NULL the input data values
are copied into the reserved buffer before the start of encoding.

External tile multiplexing is also supported. Individual tiles can be directly encoded by the
JPEG2000_EncodeTile procedure. In this case, the input tile data should be pre-loaded into the
reserved input buffer. JPEG2000_EncodeTile accepts the following arguments:

- nTile – current tile number,

- pOutData – pointer to output data buffer,

- pOutDataSize – pointer to value that will hold output stream size.

When the nTile is equal to 0 (processing of the first tile) JPEG2000_EncodeTile will perform
necessary actions for JPEG2000 file header creation. These actions are performed by call to
EncodeMainHdr (Encoder.c). EncodeMainHdr forms JPEG2000 file header in accordance with
the requirements of standard, i.e. it outputs all the necessary description information to the output
stream before the start of the output data stream for the first file. Similarly, if the nTile equals to
the number of the last tile the end marker is output after the tile data stream.

In contrast to JPEG2000_Encode call such parameters as allocation variant, wavelet
transformation type and output file size should be set before the first tile can be processed. These
parameters may be set by the InitDataStructures function (Encoder.c).

The first stage of encoding process is the forward wavelet transformation (see 4.2 for details).
Both transformation types are implemented in fixed point arithmetic and, in case of 9/7 wavelet
filter, the output data are scaled up (see nSamplingCoefficient). This scaling effect is
compensated in the code blocks analysis stage. The wavelet transformation also includes the
constant offset data shifting (DC shifting).

ALACRON JPEG2000 ENCODER

Page 8 of 8

4. Algorithms and Implementations
The present software uses the following important algorithmic features: static memory allocation,
2D wavelet transformation algorithm with lifting / convolution fusion scheme, passes-based rate
control algorithm, tabulated code blocks / passes processing method and tabulated quantization
scheme.

4.1 Static memory allocation
Static memory allocation is used to eliminate memory allocation / reallocation time during
program execution. Some statically allocated data is re-used for different buffers during different
execution stages. Allocated memory map can be represented as follows (see Variables.h for
details):

Input Buffer – buffer for input image

Size: ImageWidth * ImageHeight.

Output Buffer – buffer for output wavelet coefficients, 16-bit words,

 Size: ImageWisth ImageWidth * ImageHeight * 2.

DWT Temporary Buffer – buffer for temporary wavelet coefficients (used during wavelet
transformation)

 Size: ImageWisth ImageWidth * ImageHeight * 2.

Flags Temporary Buffer – buffer for arithmetic encoder flags

 Size: 2 * CblksAmount * (CblkWidth + 2) * (CblkHeight + 2),

where CblkWidth is width in pixels of one code block, CblkHeight – height in pixels of one
code block, CblkAmount – full number of code blocks.

Output Stream Buffer – buffer for output stream

Size: ceil(TileWidth * TileHeight * 9 / 8).

Tag Tree Buffer – buffer for tag trees data

 Size: 2 * MaxTreeSize * SubbandsNumber * (sizeof (int) + sizeof (tagtreenode_t)),

where MaxTreeSize is (2 + 2 * (2 * CblkAmount - 1) / 3), SubbandsNumber – number
of wavelet subbands.

4.2 Discrete Wavelet Transformation
Some algorithm improvements were introduced into discrete wavelet transformation procedure.
Most significant of them are parallel packed data processing, combined horizontal / vertical
subbands transformation, fusion convolution-lifting algorithm for vertical wavelet decomposition.

Packed data processing reduces amount of data loads and allows using of TriMedia DSP
commands such as ifir8ui (ifir8ii). Wavelet transformation module accepts data in unsigned bytes
representation (not centered around zero level) and performs DC shifting simultaneously with the
first stage of wavelet decomposition, saving on additional load/store operation otherwise
necessary for DC shifting.

ALACRON JPEG2000 ENCODER

Page 9 of 9

.
2

)2()0()1()1(

,
2

1)1()0()0(





 +

+=





 +

−=

XXYX

YYX

The current DWT implementation supports tiling adapted to work with image / tile width equal to
power of two, while image and tile height could have arbitrary size. Also each vertical tile must
start at even y coordinate. These restrictions were introduced for performance reasons. Power of
two condition for image / tile width allows us to assume that for any decomposition level we have
even number of elements in each row. This is important to ensure that for each decomposition
level each row is always aligned on a 4-bytes boundary, which is required for efficient utilization
of TriMedia memory I/O and loops unrolling.

For the 5/3 filter we use the recommended lifting scheme:

We use the lifting scheme for horizontal wavelet decomposition for the integer 5/3 filter and the
convolution scheme for the real 9/7 filter.

To reduce memory I/O operations we do not use symmetric vector extension for boundary points.
Instead, we process the first two and the last two points in a special way. For example, in case of
lifting scheme for 5/3 filter the first two points are processed as

To reduce number of memory load operations, all memory accesses are implemented as 32-bit
reads. Individual values are then fetched using byte extraction operations.

In contrast to the 5/3 filter, we use a convolution scheme for real 9/7 wavelet transformation. This
scheme was chosen to better utilize TriMedia parallel DSP instructions. These instructions (such
as ifir8ui and ifir8ii) allow to perform four bytes convolution instead of a single 32-bit multiplication.
Because we accept the unshifted input data (represented in unsigned bytes) we use ifir8ui
instruction that accept unsigned values as first argument and signed as second one. For each
pixel we need to perform convolution between either 9 or 7 bytes so each elementary convolution
could take one or more execution of ifir8ui.





 ++

++=+





 +++−

−=

2
)22()2()12()12(

,
4

2)12()12()2()2(

nXnXnYnX

nYnYnYnX

where Y – input vector, X – output vector.

ALACRON JPEG2000 ENCODER

Page 10 of 10

P1 P4P3P2 C1 C4C3C2

X

X
X

X

+
Out

Fig.2 Parallel bytes processing by TriMedia DSP operations

 a) b)

Fig.3 Classical vertical decomposition – a), vertical decomposition row-by-row – b).

For the same reason, all computations are performed in fixed point. In the first iteration, lowpass
and highpass wavelet transformation coefficients are scaled up to integer values by multiplication
by LMUL and HMUL values (see jpc\Wavelet\WConsts.h for details). LMUL and HMUL values
were chosen to fit [–128, 127] one byte dynamic range.

The second stage of the first wavelet decomposition is performed with coefficients that convert
our upscaled arithmetic back to the original scaling (all other decompositions are performed with
the same transformation coefficients). This stage is equal to convolution with transformation
coefficients modified to compensate the upscaling effect of the first stage (see L2_x and H2_x
coefficients in jpc\Wavelet\WConsts.h). At the output of the first wavelet iteration all values are
scaled up by four bits and all other iterations continue to operate on four bits upscaled fixed-point
numbers.

A very significant aspect affecting algorithm performance is TriMedia caching mechanism.
TriMedia processor has 16 Kb data cache and in case of frequent out-to-cache data processing,
efficiency of any algorithm becomes very low. To avoid cache misses for vertical DWT filtering we
propose a special horizontal-vertical decomposition method. Effectively, the filtering is carried out
in the sliding window, moving from up to down (see picture below).

If data belonging to a sliding window fit into the cache, cache updates will happen only when a
new row is introduced into processing. The amount of processing data can be estimated as

DataSize = WindowHeight * WindowWidth * DataTypeSize,

ALACRON JPEG2000 ENCODER

Page 11 of 11

[]
[]

[]
[] ,

)2(1)2(

)12()12(
)12()12()2()2(

)22()2()12()12(
)12()12()2()2(

)22()2()12()12(

















=

+=+
++−+=

++++=+
++−+=

++++=+

nY
K

nY

nKYnY
nYnYnYnY

nYnYnYnY
nYnYnXnY

nXnXnXnY

δ
γ

β
α

Fig.4 Separate vertical decompositions of image parts

where DataTypeSize – number of bytes in one data element representation.

We use 16 bits data representation, so DataTypeSize is equal to 2. For example, in case of
image width of 1024 pixels and 9/7 transform convolution scheme (where 9 elements are required
for a single output coefficient calculation), we can estimate the required “working set” data size as
1024*9*2 = 18 Kb.

If the required amount of working data exceeds TriMedia cache size, many unwanted cash load /
store actions happen. A solution to this problem is to divide image into vertical segments for
processing (see fig.4).

In this case a whole image is processed by vertical segments, with widths adequate for cache
size limitations. Note that this vertical decomposition of image segments is necessary only when
a whole image is processed without division into tiles. In the case of tiled processing, appropriate
tile size can be chosen to accommodate the size of cache. In contrast with the tiled processing,
the described algorithm performs wavelet decomposition without any additional distortion (while
tiles processing introduce symmetric extension instead of data near tiles boundaries).

For vertical decomposition in the case of 9/7 filter a special convolution-lifting scheme was
proposed. The most important feature of this scheme is reduction in number of memory load
operations. In the proposed algorithm all odd coefficients are calculated by the ordinary
convolution while the even coefficients are calculated by a lifting-like scheme based on
precalculated odd values. From a widely known lifting scheme

ALACRON JPEG2000 ENCODER

Page 12 of 12

[]

[]
[]

).2()21(
)12()12(

)22()22()2('
 where

,)12()12()2('1)2(2

nX
nXnX

nXnXnY

nYnY
K

nY
K

nY

αβ
β

αβ

δ

+
+++−

+++−=

++−+=

we may see the necessity to keep temporary values for each processing sample in a row. Hence,
in case of a row-by-row vertical decomposition we need to reserve additional memory buffers for
temporary coefficients and to perform memory load / store operations from/to these buffers. To
avoid these unwanted effects we calculate every even coefficient as a sum of convolution of
seven neighboring elements and a sum of two already computed odd coefficients:

With the same computational cost this scheme requires only 7 memory loads for each two points
processing (instead of 9 loads for the original scheme). Obviously this algorithm requires joint
processing of two neighboring rows (corresponding to even end odd vertical samples).

Both wavelet filters (5/3 and 9/7) are implemented in the following files:

• jpc\wavelet\Wavelet53.h

• jpc\wavelet\Wavelet53.c

• jpc\wavelet\Wavelet97.h

• jpc\wavelet\Wavelet97.c

• jpc\wavelet\WConsts.h

File WConsts.h defines such values as wavelet decomposition coefficients, scaling constants,
etc. Other files provide interfaces and implementations for respective filters.

The main functions of filters are _2DWavelet53 and _2DWavelet97. These functions perform 2D
wavelet decomposition of input byte-per-pixel images. Input arguments of these functions are
input image (unsigned char*), DECOMPOSITION_LEVELS – number of decomposition levels,
tile.cx and tile.cy – tile width and height, tile.xOffset and tile.yOffset – offsets of the current tile
from image top left corner.

_2Dwavelet53 and _2Dwavelet97 functions functionality is affected by the tile position, odd- or
even- alignment of tile y-offset.

The first decomposition iteration is different from the subsequent ones because the format of the
input image for the first iteration is different from the data format for other iterations (input data for
the first iteration are byte-per-pixel values, while for subsequent iterations they are 16bits-per-
pixel). For algorithmic convenience some restrictions were imposed on possible tiles sizes /
offsets. Each tile can have width equal to power of two and can start only at even row. The first
restriction ensures that any tile and any decomposition subband always starts from even sample,
the second restriction allows to use only one type of iteration procedure (iteration that starts at
even row) at the first decomposition stage.

For all iterations except the first one the iteration alignment type is automatically defined basing
on B.12 equations of the ISO/IEC 15444-1 standard (p.80). For subbands starting at even row the
IterationEven procedure is called, for subbands started at odd row the IterationOdd procedure is
called instead.

ALACRON JPEG2000 ENCODER

Page 13 of 13

Each of FirstIterationEven, IterationEven and IterationOdd procedures consists of combined
horizontal and vertical wavelet transformations. Horizontal decomposition is performed by the
procedures Lift53_8x16 and Lift53_16x16 for 5/3 filter and Conv97_8x16 and Conv97_16x16 for
9/7 filter.

Vertical transformation for 5/3 filter is computed using the standard scheme, transformation for
9/7 filter is implemented by the convolution-lifting scheme as described above.

4.3 Passes-based rate control algorithm
The rate allocation algorithm is integrated into the coefficient bit modelling and arithmetic
encoding process.

The algorithm processes one coefficient bit modelling (CBM) coding pass at a time. At each step,
a codeblock to be processed is selected, based on contributions of code blocks to image
reconstruction error. After a next CBM pass for the selected codeblock is encoded, the next
“worse error case” codeblock is selected. This process continues until a pre-defined size of output
data (arithmetic encoder output) is generated.

The pass location procedure consists of a search for appropriate code block throughout all code
blocks of the image. To compute contribution of a codeblock to image reconstruction error, the
procedure uses codeblock representation error and a pre-calculated weight. The weights are
independent of the image data, and are precomputed for each decomposition subband, bitplane
of a codeblock and coding pass type.

A simplified algorithm for passes weights estimation can be described as:
for each resolution level do

 for each subband do

 for NumBPS = 1 to MAX_BITPLANES do

 NumPasses = (NumBPS > 0) ? (3 *NumBPS - 2) : 0

 BitPos = 0

 for Pass = NumPasses to 0 do

 CumMSE = BandWeightL2 * (1 << (2*BitPos))

 if ((Pass + 2) % 3 = = 0)

BitPos += 1

PassWeight = CumMSE + (3*NumBPS - Pass)

if (Pass = = 0)

PassWeight += 100

if (Pass%3 = = 1)

PassWeight += 40

PassWeight += 2*NumBPS

Here NumBPS is the number of bit planes we expect to find in a code block, BitPos is the current
position of bitplanes, CumMSE is the cumulative mean squared error that would result if all
passes starting from the current one are rejected, BandWeightL2 is the squared band weight and
PassWeight is the target pass weight.

Computed weights are further modified to ensure proper sequence of coding passes invocation.

ALACRON JPEG2000 ENCODER

Page 14 of 14

All passes are ordered by their relative weights. This order is stored in ordering tables (see
Sources\Tier1\Order.c). Each table element corresponds to the resolution level, band, number of
bit planes, and the pass number.

In practical aspects some modifications to the algorithm may improve compressed image quality.
For some types of images (for example for images with small contrast details) some quality
improvement can be achieved when weights of passes belonging to the highest resolution levels
are increased. For other types of images (smooth brightness variation), assigning higher weights
to lower resolution levels could improve quality.

Interfaces and functionality of tier-1 and tier-2 operations are implemented in the following files:

• Tier-1 (jpc\Tier-1) – MQCod.h, MQCod.c, MQEnc.h, MQEnc.c, T1Cod.h, T1Cod.c,
T1Enc.h, T1Enc.c, T1Interface.h, T1Interface.c, Order.c.

• Tier2 (jpc\Tier-2) – T2Enc.h, T2Enc.c, Tagtree.h, Tagtree.c.

The main function of Tier-1 block is EncodeCblks (T1Interface). This procedure processes all
code blocks of image and calculates the number of non-0 bit planes present in each code block.
After the most significant non-zero bit plane is determined, all other coefficients are normalized..
This procedure is performed by the ConvertTopBitsBlockData call. Due to the performance
requirements, the current number of maximal allowed bit planes is 8. However for quality
improvement reasons coefficients of some subbands are processed as 16 bits data. This is
accomplished by the ConvertBottomBitsBlockData procedure for code blocks belonging to
resolution levels less than or equal to DECOMPOSITION_LEVELS - PROC16_LVLNO (see
Consts.h.for current PROC16_LVLNO value).

Function CalcTagTreesSizes estimates the possible size of all tag tree structures. This estimation
is based on the assumption that all passes from all code blocks are encoded.

The main function for code blocks bit modeling and encoding is RunEncoder (T1Interface.c). In
the main body of RunEncoder all code blocks are processed in the order defined by the earlier
defined tables (as described above). Each pass is encoded by the arithmetic coder EncodeCblk
(T1Enc.c) using the following functions: MQEncCreate, EncSigPass, EncRefPass, EncClnPass,
MQEncFlaush (MQEnc.c, T1Enc.c).

During arithmetic coder execution, encoder output stream is saved for later packing into the final
output stream. Each encoded pass is predictably terminated and after the each encoder
execution the probability models are reset (see annex C of ISO/IEC 15444-1 standard for details).
Such behavior is supported by MQEncCreate and MQEncFlush calls.

After each pass is encoded the output stream size is recalculated. If the output stream size plus
all headers size does not exceed the pre-set output size (based on the preset rate value) the next
pass is commenced, otherwise the procedure stops.

The final stage of the encoding process is the tier-2 module, i.e. tag array creation and output
stream packetization. On this stage two tag array structures are created. The first one
corresponds to the code blocks inclusions into the tile, the second one corresponds to the
numbers of zero bit planes in each code block. Both of these tag arrays are created by
TagarrayCreate (Encoder.c).

ALACRON JPEG2000 ENCODER

Page 15 of 15

After tag arrays are created the output stream is packed by the EncodePkts procedure (T2Enc.c).
This function sequentially takes the output stream of each code block and outputs it into the final
output stream for each tile. During the packetization process each output stream of code block is
accompanied by the proper header and is output into the tile output stream. Also the tag array
information is continuously refreshed during the packetization procedure. Bit stream output is
accomplished by the BitStreamPutBit procedure, tag arrays refreshment is done by
TagarrayGetLeaf and TagarrayEncode.

4.4 FPGA-based CBM
The encoding process is optimized for faster execution on FastFrame1300 platform using the
frontend FPGA matrix. The FPGA is utilized to carry out coefficient bit modeling, which
constitutes one the main computational bottlenecks of the algorithm. The arithmetic encoder is
implemented in software on TriMedia, since the available FPGA does not provide enough
resources to implement the whole encoder there with enough parallelizm. The regular nature of
coefficient bit modeling algorithm enables relatively compact implementation in FPGA, while a
higher clock rate of TriMedia allow faster computations of arithmetic coder (sequential in its
nature, considering a single coder). VideoIn and VideoOut ports are used for data exchange
between TriMedia and FPGA.

FPGA processes data received from TriMedia portion by portion. One portion is one bit-plane of a
codeblock. Currently only 64*64 codeblocks can be processed by FPGA, so the input image and
each tile must be greater than 64*64 and must have horizontal and vertical sizes divisible by 64 if
the FPGA is tobe used.

5. Demonstration application
The provided JPEG2000 encoder is supported by the demonstration application shell J2K. This is
the C language application suitable to run on PC and TriMedia based platforms. This program
can work in a single image-processing mode and in mode that emulates multi-frame source. After
the program is started it checks for processing conditions consistency. This analysis includes
validation of tiles width and height in accordance with the restrictions imposed by the DWT
implementation. Also these checks include validation of size of globally allocated memory buffer
which is restricted to the maximal allowable for TriMedia platform (16 M).

If no errors are found, the application tries to read file JobScheduler.txt. This file should contain
the names of input files, each in new line, for example:

JobScheduler.txt

 1.pbm

 2.pbm

 …

 N.pbm

If the JobScheduler.txt file is correctly read all specified files are sequentially processed. The
output file names are formed in accordance with the input file name and processing parameters,
i.e., wavelet filter type, rate allocation type, and compression ratio. Output file name template is

 [OutputName].[CompressionRatio]_[FilterType]_[AllocationVariant].jpc.

For example, for input file 1.pbm, compressed with 1:20 ratio and filter 9/7 for the first allocation
variant, the output file name generated is: 1.20_97_0.jpc.

ALACRON JPEG2000 ENCODER

Page 16 of 16

6. Performance estimation features
The provided JPEG2000 encoder has some features aimed to support performance estimation.
Durations of all processing stages are measured and stored in the timing results array. Duration
of any stage can be accessed as an element of iTimes array or output to the console by
invocation of JPEG2000_PrintTimingResults function (IO.c). For example, performance
measuring report may look like

--- 1.pbm ---

Decoding time = 474696 ms

Tile-1: 474696 ms

Encoding time = 543164 ms

 Prepare tiles information = 117 ms

 Encode Main Header = 5 ms

 Encode Main Body = 543029 ms

 Tile-1: 543029 ms

 Stage0: Tile Preparation = 290 ms

Stage1: Perform Wavelet Analysis = 131022 ms

 Stage2: Tier-1 = 379016 ms

 Stage3: Encoding Tile Zero-Tree = 12951 ms

Here 1.pbm is the name of the input file;

Decoding time is time taken for input file format decoding

Encoding time is time taken for image encoding;

Prepare tiles information is memory mapping for tile resolution levels, bands and code blocks;

Encode Main Header is creation of JPEG2000 file header;

Encode Main Body is the main procedure for image encoding.

Encode main body stage is further subdivided into several stages for each tile:

Tile Preparation is initializing of tile dependent structures (levels, bands etc.);

Perform Wavelet Analysis -- wavelet transformation stage,

Tier-1 – coefficient bit modeling and arithmetic encoder;

Encoding Tile Zero-Tree – file output stream creation.

7. Working parameters and constants
Most parameters and constants that control JPEG2000 encoder functionality are defined in files
Parameters.h and Consts.h.

File Consts.h provide parameters that define general functionality of the encoder. The most
important of them are:

IMAGE_PIXELS – number of pixels in processed image;

TILE_PIXELS – number of pixels in one tile;

TILE_AMOUNT – number of tiles;

ALACRON JPEG2000 ENCODER

Page 17 of 17

Number of allowed decomposition levels:

MAX_LEVELS_ALLOWED - 6,

FIVE_LEVELS_ALLOWED - 5,

FOUR_LEVELS_ALLOWED - 4,

THREE_LEVELS_ALLOWED – 3,

TWO_LEVELS_ALLOWED - 2,

ONE_LEVELS_ALLOWED - 1,

ZERO_LEVELS_ALLOWED - 0;

DECOMPOSITION_LEVELS – automatically calculated number of decomposition levels,
depending on the image size.

SUBBANDS_NUM - number of wavelet transformation subbands;

NUM_GUARD_BITS – number of guard bits;

CBLK_WIDTH_LOG2 – automatically calculated base-2 logarithm of code block width;

CBLK_HEIGHT_LOG2 – automatically calculated base-2 logarithm of code block height;

CBLK_AMOUNT – automatically calculated number of code blocks;

INITPLANES – maximal number of bit planes in a code block;

MAX_ALLOWED_PASSES maximal number of allowed CBM passes;

PASS_STREAM_MAX_LEN – automatically calculated length of one pass stream;

CBLK_OUT_STREAM_SIZE – automatically calculated length of code blocks output
stream;

MAX_TREE_SIZE – automatically calculated length of zero tree;

MAX_TILE_OUT_SIZE – automatically calculated size of one tile output stream;

Do not edit anything in Consts.h!

All working parameters, like image and tile size should be set in file Parameters.h:

 IMAGE_WIDTH – image width in pixels;

 IMAGE_HEIGHT – image height in pixels;

 TILE_WIDTH – tile width in pixels;

 TILE_HEIGHT – tile height in pixels.

One can use file Parameters.h to tune the functionality of the JPEG2000 encoder.

To enable the FPGA usage for CBM, USE_FPGA constant should be defined in the makefile (this
option can be used with TriMedia version only, not with x86).

8. User interfaces
JPEG2000 encoder provides a set of interfaces described in file JPEG2000.h. The following
functions are provided:

• void JPEG2000_Initialize()

This function must be called once, immediately after the program is loaded.

ALACRON JPEG2000 ENCODER

Page 18 of 18

• void JPEG2000_Encode(

char *pInputBuff, // Input buffer

 int iOutputFileSize, // Target output file size

 int iTableVariant, // Rate allocation variant (0 or 1)

 int iWavletTransform, // Wavelet transformation 0 - 5/3, 1 – 9/7

 uchar **pOutputBuff, // Output buffer

 int *pOutDataSize // Output buffer length

)

If the pInputBuff is NULL then the input image is assumed to be already stored in the statically
allocated memory buffer. Otherwise the copying is performed before the start of the encoding.
iOutputFileSize defines the desired size of compressed image, pOutDataSize points to the
variable where the exact resulting size of output file is to be stored. iTableVariant and
iWaveletTransform define processing mode, pOutputBuff points to the buffer for the compressed
image. If tiles division is requested in the Parameters.h file, memory management operations for
tiles support are provided inside the JPEG2000_Encode procedure.

It is recommended to use this function for small images compression without image tiling.

• void JPEG2000_EncodeTile(

 int nTile, // Tile number

 uchar **pOutData, // Pointer onto output buffer

 int *pOutDataSize // Output buffer length

)

JPEG2000_EncodeTile assumes that each tile is stored in the statically allocated memory buffer
(4.1). In such case all necessary actions related to JPEG2000 output stream creation are
automatically performed in the JPEG2000_EncodeTile function. In case when the nTile is zero,
JPEG2000 header is also created and stored at the very beginning of the output buffer. In case of
the last tile processing, a necessary end of file marker will be attached to the end of the stream.

Note that JPEG2000_InitDataStructurs function must be called before each image compression
to initialize compression parameters. Tiles must be compressed in their natural order, starting
from number zero.

• void InitDataStructurs(

 int iOutputFileSize, // Target output file size

 int iTableVariant, // Rate allocation variant (0 or 1)

 int iWavletTransform // Wavelet transformation 0 - 5/3, 1 – 9/7

)

iOutputFileSize defines the desired size of compressed image. iTableVariant and
iWaveletTransform define the processing mode. If JPEG2000_EncodeTile is used, this function
must be called once before image encoding.

• int JPEG2000_CheckConditions()

Use this function to verify the defined compression parameters. It returns the status code. If the
returned value is greater than 300, there is an error in parameters. See also JPEG2000_Error.

• void JPEG2000_Error(

ALACRON JPEG2000 ENCODER

Page 19 of 19

unsigned int nErr // Error status code

)

This function can be useful to print error related information.

• unsigned char* JPEG2000_GetInputBuffer()

Returns pointer to the statically allocated memory buffer.

• int JPEG2000_GetInputBufferSize()

Returns size of the statically allocated memory buffer.

• unsigned char* JPEG2000_GetOutputBuffer(

int nTile // Tile number

)

Returns pointer to the compressed output stream for the given tile.

• int JPEG2000_GetOutputBufferSize(

int nTile // Tile number

)

Returns the size of compressed output stream for the given tile.

• unsigned char* JPEG2000_GetFullOutputBuffer()

Returns pointer to the compressed output stream for the current image.

• int JPEG2000_GetFullOutputBufferSize()

Returns the size of compressed output stream for the current image.

• void JPEG2000_GetTileRect(

int nTile, // Tile number

int *cx, // Horizontal tile size

int *cy, // Vertical tile size

int *xOffset, // Horizontal offset of a tile on the tile grid

int *yOffset // Vertical offset of a tile on the tile grid

)

This function can be used by external module to properly organize image tiling. Returned values
must be interpreted in terms defined in ISO_IEC_15444-1 2000(E).

• void JPEG2000_PrintTimingResults()

Print the profiling results for the current image. Must be called after image compression. An
example of profiling report can be seen in section 6 of this document.

JPEG2000 Library User’s Guide

ALACRON JPEG2000 ENCODER

Page 20 of 20

9. Introduction

9.1 Purpose
This document provides a user description of JPEG2000 encoder library functionality and
interfaces.

9.2 Definitions, Acronyms and Abbreviations
JPEG2000 – image compression algorithm described in ISO_IEC_15444-1 2000(E).

Tile – a rectangular array of points on the image. Each tile can be processed by encoder
independently.

CBM – Coefficient Bit Modeling

DWT – Discrete Wavelet Transformation

Tier-1 – CBM and arithmetic encoder module.

Tier-2 – Zero-tree encoding and codestream creation module.

9.3 References
ISO_IEC_15444-1 2000(E) – Information technology – JPEG 2000 image coding system. Part1:
Core coding system.

ISO/IEC 14492-1, Lossy/lossless coding of bi-level images, 2000.

JPEG-2000 Software Architecture Document, Alarity Corp., September, 2002.

10. Conditions
The JPEG2000 encoder library can be used by C or C++ programmer for image encoding on
following hardware platforms:

• x86 platform with DOS, Windows, Unix (Linux, FreeBSD) and some others excluding
MacOS. (It is recommended to use Microsoft Visual C compiler for Windows platform.)

• Philips TriMedia platform. (The Philips SDE is needed.)

• Alacron FastFrame 1300 platform (The Alacron’s alfast library is needed).

The minimal recommended hardware requirements are:

• 16 Mb of RAM

11. Installation and removing
No installation is needed. Unpack archive lib.zip into a folder on your computer.

To uninstall JPEG2000 encoder library from your computer remove unpacked files and folders.

ALACRON JPEG2000 ENCODER

Page 21 of 21

12. Overview
Image encoding process can be represented as shown in fig.1. It consists of five main stages:
input image processing, wavelet transform, tier-1 and tier-2 processing and output file generation.

The Input unit performs input image file reading and decoding. This module actually should be
considered as an interface module and should not be treated as a part of JPEG2000 encoder.
The only supported input format is grayscale 8 bit images. The example application provides
input from PBM (Portable Bit Map) files, any other input formats may be supported, as long as it
can be converted to 8 bits unsigned input data representation for DWT module input. This
restriction comes from the finite precision arithmetic features used in DWT module optimized
implementation.

The Discrete wavelet transformation module supports both standard wavelet filters
recommended by ISO JPEG2000 – reversible 5/3 and irreversible 9/7.

The Tier-1 module provides encoding of resulting DWT coefficients with dynamic rate allocation
control. Tier-1 uses original Passes allocation algorithm and implements single pass fidelity
allocation method.

The Tier-2 module performs zero-tree encoding and JPEG2000 final output stream generation.

The Output module provides the output interface and, as the input module, does not belong to
the JPEG2000 encoding algorithm.

The current software provides support of tiles processing in accordance with the requirements of
ISO/IEC 15444-1 standard. However, several restrictions were introduced for the performance
optimization reasons:

• Each tile component must start at even row.

• Width of each tile must be the power of two.

• Currently the permissible tile and image sizes are restricted to 1024*2048 and can be
changed only with library recompilation.

The output image size (defining the compression ratio), the type of wavelet transformation filter
and the type of rate allocation variant are specified for the encoder as external encoding
parameters.

Input DWT Tier-1 Tier-2 Output

Rate
control

Fig.1 Image encoding process

ALACRON JPEG2000 ENCODER

Page 22 of 22

Two general modes are supported – internal tiles multiplexing (when division into tiles is
performed inside the encoder) and external multiplexing (when tile data are passed into encoder
from the outer source).

13. Summary of Capabilities
Current version of JPEG2000 encoder library provide the following list of features:

• Grayscale (256 levels of gray, 8 bit per pixel) image encoding
• Image tiling
• Two different wavelet filters, reversible 5/3 filter and irreversible 9/7 filter.

Encoding functions are optimized for fastest processing on TriMedia and FastFrame 1300
platforms. The following algorithm and features are implemented in the library.

• Original rate allocation algorithm working faster on big compression ratios.
• Original DWT providing high performance for TriMedia based platforms.
• Statically allocated memory buffer, there are no memory allocations in JPEG2000

encoder.
• There are no floating point operations in the JPEG2000 encoder.

The following standard features are not supported yet:

• More than one color component;
• Output stream layering;
• Regions of interest;
• Selective arithmetic coding bypass;
• Loseless compression;
• Only one progression order is supported (layer-resolution level-component-position).

14. User interfaces
JPEG2000 encoder provides a set of interfaces described in file JPEG2000.h. The following
functions are provided:

• void JPEG2000_Initialize()

This function must be called once, immediately after the program is loaded.

• void JPEG2000_Encode(

char *pInputBuff, // Input buffer

 int iOutputFileSize, // Target output file size

 int iTableVariant, // Rate allocation variant (0 for MSE rate allocation
principle, // 1 for original rate allocation
principle)

int iWavletTransform, // Wavelet transformation 0 – reversible 5/3 filter, 1 –

// irreversible 9/7 filter

 uchar **pOutputBuff, // Output buffer

 int *pOutDataSize // Output buffer length

)

ALACRON JPEG2000 ENCODER

Page 23 of 23

If the pInputBuff is NULL then the input image is assumed to be already stored in the statically
allocated memory buffer. Otherwise the copying is performed before the start of the encoding.
iOutputFileSize defines the desired size of compressed image, pOutDataSize points to the
variable where the exact resulting size of output file is to be stored. iTableVariant and
iWaveletTransform define processing mode, pOutputBuff points to the buffer for the compressed
image. If tiles division is requested in the Parameters.h file, memory management operations for
tiles support are provided inside the JPEG2000_Encode procedure.

It is recommended to use this function for small images compression without image tiling.

• void JPEG2000_EncodeTile(

 int nTile, // Tile number

 uchar **pOutData, // Pointer onto output buffer

 int *pOutDataSize // Output buffer length

)

JPEG2000_EncodeTile assumes that each tile is stored in the statically allocated memory buffer.
In such case all necessary actions related to JPEG2000 output stream creation are automatically
performed in the JPEG2000_EncodeTile function. In case when the nTile is zero, JPEG2000
header is also created and stored at the very beginning of the output buffer. In case of the last tile
processing, a necessary end of file marker will be attached to the end of the stream.

Note that JPEG2000_InitDataStructurs function must be called before each image compression
to initialize compression parameters. Tiles must be compressed in their natural order, starting
from number zero.

• void InitDataStructurs(

 int iOutputFileSize, // Target output file size

 int iTableVariant, // Rate allocation variant (0 for MSE rate allocation
principle, // 1 for original rate allocation
principle)

int iWavletTransform // Wavelet transformation 0 – reversible 5/3 filter, 1 –

// irreversible 9/7 filter

)

iOutputFileSize defines the desired size of compressed image. iTableVariant and
iWaveletTransform define the processing mode. If JPEG2000_EncodeTile is used, this function
must be called once before image encoding.

• int JPEG2000_CheckConditions()

Use this function to verify the defined compression parameters. It returns the status code. If the
returned value is greater than 300, there is an error in parameters. See also JPEG2000_Error.

• void JPEG2000_Error(

unsigned int nErr // Error status code

)

This function can be useful to print error related information. For brief errors list see Annex I.

• unsigned char* JPEG2000_GetInputBuffer()

Returns pointer to the statically allocated memory buffer.

ALACRON JPEG2000 ENCODER

Page 24 of 24

• int JPEG2000_GetInputBufferSize()

Returns size of the statically allocated memory buffer.

• unsigned char* JPEG2000_GetOutputBuffer(

int nTile // Tile number

)

Returns pointer to the compressed output stream for the given tile.

• int JPEG2000_GetOutputBufferSize(

int nTile // Tile number

)

Returns the size of compressed output stream for the given tile.

• unsigned char* JPEG2000_GetFullOutputBuffer()

Returns pointer to the compressed output stream for the current image.

• int JPEG2000_GetFullOutputBufferSize()

Returns the size of compressed output stream for the current image.

• void JPEG2000_GetTileRect(

int nTile, // Tile number

int *cx, // Horizontal tile size

int *cy, // Vertical tile size

int *xOffset, // Horizontal offset of a tile on the tile grid

int *yOffset // Vertical offset of a tile on the tile grid

)

This function can be used by external module to properly organize image tiling. Returned values
must be interpreted in terms defined in ISO_IEC_15444-1 2000(E).

• void JPEG2000_PrintTimingResults()

Print the profiling results for the current image. Must be called after image compression. For
example, performance measuring report for input file 1.pbm may look like

--- 1.pbm ---

Encoding time = 543164 ms

 Prepare tiles information = 117 ms

 Encode Main Header = 5 ms

 Encode Main Body = 543029 ms

 Tile-1: 543029 ms

 Stage0: Tile Preparation = 290 ms

Stage1: Perform Wavelet Analysis = 131022 ms

 Stage2: Tier-1 = 379016 ms

 Stage3: Encoding Tile Zero-Tree = 12951 ms

ALACRON JPEG2000 ENCODER

Page 25 of 25

Encoding time is time taken for image encoding;

Prepare tiles information is memory mapping for tile resolution levels, bands and code blocks;

Encode Main Header is creation of JPEG2000 file header;

Encode Main Body is the main procedure for image encoding.

Encode main body stage is further subdivided into several stages for each tile:

Tile Preparation is initializing of tile dependent structures (levels, bands etc.);

Perform Wavelet Analysis -- wavelet transformation stage,

Tier-1 – coefficient bit modeling and arithmetic encoder;

Encoding Tile Zero-Tree – file output stream creation.

15. Demonstration application
The provided JPEG2000 encoder is supported by the demonstration application shell J2K. This is
the C language application suitable to run on PC and TriMedia based platforms. This program
can work in a single image-processing mode and in mode that emulates multi-frame source. After
the program is started it checks for processing conditions consistency. This analysis includes
validation of tiles width and height in accordance with the restrictions imposed by the DWT
implementation. Also these checks include validation of size of globally allocated memory buffer
which is restricted to the maximal allowable for TriMedia platform (16 M). The source codes of the
example application are listed in Annex III.

If no errors are found, the application tries to read file JobScheduler.txt. This file should contain
the names of input files, each in new line, for example:

JobScheduler.txt

 1.pbm

 2.pbm

 …

 N.pbm

If the JobScheduler.txt file is correctly read all specified files are sequentially processed. The
output file names are formed in accordance with the input file name and processing parameters,
i.e., wavelet filter type, rate allocation type, and compression ratio. Output file name template is

 [OutputName].[CompressionRatio]_[FilterType]_[AllocationVariant].jpc.

For example, for input file 1.pbm, compressed with 1:20 ratio and filter 9/7 for the first allocation
variant, the output file name generated is: 1.20_97_0.jpc.

To compile the demonstration application switch to folder UsageExample_make (see Annex
II),choose PC, TriMedia or TriMedia+FPGA (FastFrame 1300) target platform by changing dir
onto corresponding folder. For x86 platform, open the JPC.dsp with Microsoft Visual studio and
Rebuild all ([Alt]-[B]-[R]). For TriMedia based platforms type nmake and press enter. The
example binary will be created in the current folder.

ALACRON JPEG2000 ENCODER

Page 26 of 26

16. Returned Error Codes List

Error code Description
400 Tile height is too low
401 Tile width is too low
402 Tile width is too high
403 Tile height is too high
404 Vertical image slicing is not allowed
405 Tile height must be even
407 Output size is too low
408 Not enough memory
< 300 No errors

17. JPEG2000 Software Library Contents
The library distribution consists of the following files and folders:

UsageExample – this directory contains the JPEG2000 encoder functionality usage example.

 _make – directory contains files for making binaries
 Debug – empty directory for compilation-time temporary files saving
 PC – project for x86 binaries creation
 J2K.dsp – Visual Studio project
 TriMedia – files for TriMedia binaries creation
 tmconfig – TriMedia configuration file
 makefile – makefile for TriMedia binaries creation
 TriMedia+FPGA – files for FastFrame 1300 binaries creation
 tmconfig – TriMedia configuration file
 makefile – makefile for TriMedia binaries creation

 pbm – directory contains PBM (P5) decoding implementation.
 PBMdec.c – Portable Bitmap File (PBM) library.
 PBMdec.h – PBM library interfaces definition.
 J2K.c – example application source.

CBM.hex – loadable CBM executable for FPGA (for FastFrame 1300 platform)
JPEG2000.a – JPEG2000 encoding library for TriMedia platform.
JPEG2000.h – JPEG2000 encoder interfaces definition.
JPEG2000.lib – JPEG2000 encoding library for x86 platform.
JPEG2000_FPGA.a – JPEG2000 encoding library for FastFrame1300 platform.

18. JPEG2000 Library Example Application

/*
 * Name: J2K.c
 * Description: JPEG2000 library usage example
 * Project: JPEG2000
 *
 * Copyright (c) 2002 Alarity Corp.
 *

ALACRON JPEG2000 ENCODER

Page 27 of 27

 * Created: 16-July-2002 Vadim Vashkelis V1.00
 *
 * Revision history:
 *
 */

/**\
* Includes.
**/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "..\JPEG2000.h"
#include "pbm/pbmdec.h"

/**\
* Macros definitions.
**/

// Maximal allowed files
#define MAX_FILES_REQUESTED 369

#define MAX_FILES MAX_FILES_REQUESTED

/**\
* Code.
**/

static int test(
 int iOutputFileSize,
 int iTableVariant,
 int iWavletTransform
);

int main()
{
 int nError = JPEG2000_CheckConditions();
 int nCPU = JPEG2000_Initialize();

 if(nError >= 300){

 JPEG2000_Error(nError);

 return EXIT_FAILURE;

 }
 else
 {
 test(IMAGE_PIXELS / 20, 0 , 0);

ALACRON JPEG2000 ENCODER

Page 28 of 28

 test(IMAGE_PIXELS / 30, 0 , 0);
 test(IMAGE_PIXELS / 50, 0 , 0);
 test(IMAGE_PIXELS / 20, 1 , 0);
 test(IMAGE_PIXELS / 30, 1 , 0);
 test(IMAGE_PIXELS / 50, 1 , 0);
 test(IMAGE_PIXELS / 20, 0 , 1);
 test(IMAGE_PIXELS / 30, 0 , 1);
 test(IMAGE_PIXELS / 50, 0 , 1);
 test(IMAGE_PIXELS / 20, 1 , 1);
 test(IMAGE_PIXELS / 30, 1 , 1);
 test(IMAGE_PIXELS / 50, 1 , 1);

 return EXIT_SUCCESS;
 }
}

int test(
 int iOutputFileSize,
 int iTableVariant,
 int iWavletTransform
)
{
 FILE* in;
 FILE* out;

 char pInputNames[MAX_FILES][255];
 char pOutputNames[MAX_FILES][255];
 char pReverser[255];
 int nFiles;
 FILE* hSchedFile;
 int nFilesCount;
 int nDotPos;
 int nDecLen;
 int nDecimatingValue;

 if(iWavletTransform)
 {
 printf(
 "!!! Parameters: %d_97_%d !!!\n",
 iOutputFileSize,
 iTableVariant
);
 }
 else
 {
 printf(
 "!!! Parameters: %d_53_%d !!!\n",
 iOutputFileSize,
 iTableVariant
);
 }

ALACRON JPEG2000 ENCODER

Page 29 of 29

 /* Open the scheduler file. */
 if (!(hSchedFile = fopen("JobScheduler.txt", "rb")))
 {
 printf("Error: Cannot open JobScheduler.txt\n");
 exit(EXIT_FAILURE);
 }

 nFiles = 0;
 while (!feof(hSchedFile) && nFiles < MAX_FILES)
 {
 fgets (pInputNames[nFiles], 255, hSchedFile);
 if (strchr(pInputNames[nFiles], '\r') != NULL)
 pInputNames[
 nFiles
]
 [
 strchr(pInputNames[nFiles], '\r') -
 pInputNames[nFiles]
] = '\0';

 strcpy (pOutputNames[nFiles], pInputNames[nFiles]);
 nDotPos = strstr (pOutputNames[nFiles], ".pbm") -
 pOutputNames[nFiles];

 // Compression ratio
 nDecimatingValue = IMAGE_PIXELS / iOutputFileSize;
 nDecLen = 0;
 while (nDecimatingValue > 0){
 pReverser [nDecLen] = '0' + (nDecimatingValue % 10);
 nDecLen ++;
 nDecimatingValue = nDecimatingValue / 10;
 }
 while (nDecLen > 0){
 nDecLen --;
 nDotPos ++;
 pOutputNames[nFiles][nDotPos] = pReverser[nDecLen];
 }
 // FILTER
 pOutputNames[nFiles][nDotPos + 1] = '_';
 if(iWavletTransform){
 pOutputNames[nFiles][nDotPos + 2] = '9';
 pOutputNames[nFiles][nDotPos + 3] = '7';
 } else {
 pOutputNames[nFiles][nDotPos + 2] = '5';
 pOutputNames[nFiles][nDotPos + 3] = '3';
 }
 // TABLE_VARIANT
 pOutputNames[nFiles][nDotPos + 4] = '_';
 if(iTableVariant){
 pOutputNames[nFiles][nDotPos + 5] = '1';
 } else {
 pOutputNames[nFiles][nDotPos + 5] = '0';

ALACRON JPEG2000 ENCODER

Page 30 of 30

 }
 pOutputNames[nFiles][nDotPos + 6] = '.';
 pOutputNames[nFiles][nDotPos + 7] = 'j';
 pOutputNames[nFiles][nDotPos + 8] = 'p';
 pOutputNames[nFiles][nDotPos + 9] = 'c';
 pOutputNames[nFiles][nDotPos + 10] = '\0';

 nFiles ++;
 }

 fclose (hSchedFile);

 for (nFilesCount = 0; nFilesCount < nFiles; ++ nFilesCount)
 {
 if(pInputNames[nFilesCount][0] != '\0'){
 /* Open the input image file. */
 if (!(in = fopen(pInputNames[nFilesCount], "rb"))) {
 printf(
 "error: cannot open input image file %s\n",
 pInputNames[nFilesCount]
);
 exit(EXIT_FAILURE);
 }

 if (TILE_AMOUNT == 1)
 {
 int cx, cy, xOffset, yOffset;
 int pOutDataSize;
 unsigned char *pOutputBuff;

 JPEG2000_GetTileRect(0, &cx, &cy, &xOffset, &yOffset);

 pbm_GetTileSource (in, JPEG2000_GetInputBuffer(), 0,
 cx, cy, xOffset, yOffset);

 JPEG2000_Encode (NULL,
 iOutputFileSize,
 iTableVariant,
 iWavletTransform,
 &pOutputBuff,
 &pOutDataSize);

 out = fopen(pOutputNames[nFilesCount], "wb+");
 fwrite(pOutputBuff, 1, pOutDataSize, out);

 fclose(out);
 }
 else
 {
 int cx, cy, xOffset, yOffset, nTile;
 int pOutDataSize;
 unsigned char *pOutputBuff;

ALACRON JPEG2000 ENCODER

Page 31 of 31

 JPEG2000_InitDataStructures(iOutputFileSize,
 iTableVariant,
 iWavletTransform);
 for (nTile = 0; nTile < TILE_AMOUNT; nTile++)
 {
 JPEG2000_GetTileRect(nTile, &cx, &cy, &xOffset, &yOffset);
 pbm_GetTileSource (in, JPEG2000_GetInputBuffer(), nTile,
 cx, cy, xOffset, yOffset);
 JPEG2000_EncodeTile (nTile,
 &pOutputBuff,
 &pOutDataSize);
 }
 out = fopen(pOutputNames[nFilesCount], "wb+");
 fwrite(
 JPEG2000_GetFullOutputBuffer(), 1,
 JPEG2000_GetFullOutputBufferSize(), out
);
 fclose(out);
 }

 fclose (in);
 }

 JPEG2000_PrintTimingResults(pInputNames[nFilesCount]);
 }

 /* Success at last! :) */
 return EXIT_SUCCESS;
}

19. Coefficient Bit Modeling (BitPlane Scanner) Interface
FE_FPGA _XCV300E-8FG456 Alacron FastFrame1300

1. General information

The function implements the Coefficient Bit Modelling (CBM) functionality of JPEG2000 encoder.
That is, it accepts input data and input state of algorithm flags (“significance”, “refined” and
“visited” bitplanes), and outputs the requested CBM pass output (stream of data and context
labels to be input to the arithmetic encoder) and updated flags planes.

Since the function is to be used in a pass-by-pass encoding framework, a single function
invocation produces a single coding pass. In order to allow independent codeblock processing
without losing algorithm context (which is composed of three “flag” bitplanes – “Significance”,
“Refined” and “Visited” flags), flags backup/load functionality is provided, allowing to load or
backup the user-specified flag bitplane.

For interfacing with the function the following TriMedia interfaces are utilized:

- VideoIn port: receiving CBM output (data & context labels to be used as input to the arithmetic

ALACRON JPEG2000 ENCODER

Page 32 of 32

encoder) and reading intermediate flags planes from the function). External (to TriMedia) clock is
used.

- VideoOut port: loading of data planes, sign planes and intermediate flags planes into the FPGA.
External (to TriMedia) clock is used.

- PCI address 0xFFF80000 (dumbus address space) - R/W - function control register
- PCI address 0xFFF80004 (dumbus address space) - R – byte counter of most recent CBM pass

output data (not counting supplemental 0xFF bytes at end of data stream).

Source of all sync is VID_CLK2 signal.

VideoIn and VideoOut ports are used in the message-passing mode. Each data block (bitplane
data – 512 bytes, CBM output data – variable size, with byte granularity) are transferred in a
single message, therefore large enough buffers must be assigned to VideoIn port to
accommodate the maximal possible amount of data. Several (5) supplemental 0xFF bytes are
appended to the end of CBM pass output data stream to make sure enough data is transmitted
for the VideoIn port to function properly.

For the Virtex300-6 FPGA and the current implementation, the maximal design frequency is 70
MHz.

The only supported codeblock size is 64x64 (hence a bitplane size is 64x64/8 = 512 bytes).

2. Notes on scanning algorithm implementation

Three different coding pass types are implemented, as defined in the JPEG2000 standard:
Significance propagation, Magnitude refinement, Cleanup. During each pass, a single pre-loaded data
bitplane (and, if necessary, a sign bitplane) is scanned, together with relevant flags and the output data
stream, consisting of data bits and context labels, is produced. Relevant to the pass flags are updated.

To save on I/O operations, flag bitplanes consisting of all zeros do not have to be pre-loaded
explicitly. For this case a special control bit exist in the control register, forcing the flags plane to be 0
irrespective of the flags state in FPGA RAM. When a flag plane is used in a coding pass, its state in RAM
is correct after the pass. Note that if a flag bitplane is not used in a pass, it remains unmodified. For
instance, after the significance propagation pass, the “Refined” flag bitplane remain unchanged, even if
respective “Force to zero” flag was set.

In order to minimize the number of load/backup flags operations when switching between

codeblocks, it is important to understand which flag planes is used by which pass type.

19.1 Significance propagation uses (reads and updates if necessary):
 “Significance” and “Visited” flags.

19.2 Magnitude refinement uses (reads and updates if necessary):
 “Significance”, “Refined”, “Visited” flags.

19.3 Clean-up uses (reads and updates if necessary):
 “Significance”, “Visited” flags. “Visited” flags are reset to 0s after this pass, although they do not

really have to be backed up/restored between different data bitplanes processing, since
predictably no one point is “visited” for the new bitplane and all points are “visited” after all coding
passes have been applied to a data bitplane.

ALACRON JPEG2000 ENCODER

Page 33 of 33

Flags semantic and initial states:

“Significance” – “Significance” state of the point, as defined in the standard (that is, a point becomes

“significant” (this flag set to 1) when the first non-0 data bit of the coefficient is encoded). Must
be kept persistent throughout entire codeblock encoding (for all data bitplanes). Initial state at
the start of codeblock encoding (at the start of the first “cleanup” pass) – all 0s.

“Refined” – Set to 1 when a point is “refined” (processed by the “magnitude refinement” pass) for the

first time. Necessary to select a proper context, since it is different for the first refinement. Initial
state at the start of the first “refinement” pass for the codeblock – all 0s.

“Visited” – Set to 1 when a point is processed either in “Significance propagation” or “Magnitude

refinement” pass. Always reset to 0 in the clean-up pass. Necessary to identify points in a data
bitplane that were not processed in either “significance propagation” or “magnitude refinement”
pass, so that they are processed in the last, “cleanup” pass. Must be kept persistent throughout
a data bitplane coding (3 passes). Do not need to be saved between different data bitplanes
coding. Initial state at the start of each data bit plane encoding (at the start of the first
“significance propagation” pass for each data plane) – all 0s.

Note that for the very first (“cleanup”) pass applied to the most significant bitplane of a codeblock,

actually no flag bitplane has to be loaded or saved. Necessary 0-states for “significance” flags can be
requested by the 0-forcing bit in control register. No flag bitplane has to be backed up because (1) the
significance flag bitplane is equal to the first (just processed) data bitplane, (2) the “refined” flag bitplane
is not affected by the “cleanup” pass at all, (3) the “visited” flag bitplane, as the “significance” bitplane, is
equal to the first data bitplane.

3. Main operations

3.1 Loading of data/sign bitplanes and flags bitplanes (from TriMedia VideoOut, Msg-passing Mode)

The FPGA function is set to “receive ready” state upon the “Load” command and remains in this
state until another command is requested or the data block is transmitted through the VideoOut
port. Immediately after the command the software must transmit the properly formatted bitplane
data.
Size of expected data block is 512 bytes (64x64 single bitplane). Type of the loaded bitplane is
determined by control register, AddrM[2:0] field. TM_VideoOut_Clock – External (VID_CLK2).
TMVCO_En (bit 13) must be set. Execution of the command is finished with transition to the “Idle”
state.

3.2 Scanning/coding pass (to TriMedia VideoIn, Msg-passing Mode)

The function starts coding upon the “Coding” command, outputting CBM output data bytes to
VideoIn port as they become available. VideoIn port must be preset by software to the proper mode
before the command issue. All necessary data and flags must be pre-loaded before, initial
conditions are defined by control register fields Orient[1:0], Cn[1:0], VF_0Read, RF_0Read,
SF_0Read. Modified flags are stored to their respective FPGA memory blocks. Execution of the
command is finished with transition to the “Idle” state. Scanning proceed at VID_CLK2 clock.

3.3 Backing up flags (to TriMedia VideoIn, Msg-passing Mode)
The function starts transmitting flags plane data upon the “BackUp” command. VideoIn port must
be preset by software to the proper mode before the command issue. Type of flags bitplane

ALACRON JPEG2000 ENCODER

Page 34 of 34

(SignifFlag, RefFlag, VisFlag) is defined by control register, AddrM[2:0] field. Size of data block is
512 bytes (64x64, single bit plane). Execution of the command is finished with transition to the
“Idle” state.

4. PCI registers (on dumbus)
4.1 Command register – PCI address 0xFFF80000 (DumBus)
Bit 15 Reset (not implemented)
Bit 14 ----------- not used
Bit 13 w/r TMVCO_En - TMVideoOut Clock External

When set to 1 - VID_CLK2 output is enabled to the TMVideoOut Clock line.
TMVideoOut port should be set up to external clock source. The bit can remain
always set to 1.

Bit 12,11,10 w/r AddrM[2:0]
Type (address) of the data bitplane to be loaded/stored. The field is defined for
“Load” and “BackUp” commands. 000 - Sign, 001- Data, 010- SignifFlag, 011-
RefFlag, 100- VisFlag.

Bit 9,8 w/r Mode[1:0]
00 – “Idle”. Waiting for the next command. The state is entered immediately
after configuration of XCV300 and upon completion of any other command.
01 – “Load” Load data or flags bitplane. Type (address) of the data loaded
(Sign, Data, SignifFlag, RefFlag, VisFlag) is defined by AddrM[2:0].
10 – “BackUp” Save flags. Type (address) of the data backed up (SignifFlag,
RefFlag, VisFlag) is defined by AddrM[2:0].
11 – “Code” Scanning (coding) of data. Coding pass type and initial conditions
must be defined by Orient[1:0], Cn[1:0], VF_0Read, RF_0Read, SF_0Read
fields.

Bit 6,5,4 w/r VF-0Read, RF_0Read, SF_0Read (in this respective order)
When a bit is set to 1, the respective flag bitplane is assumed to be all zeros. Current FPGA RAM
contents is ignored and assumed to be 0. If a flag bitplane is used in the coding pass, it is always
correctly set after the pass.

Bit 3,2 w/r Orient[1:0]
Orientation of the encoded data (as per JPEG2000 standard).

Bit 1,0 w/r Cn[1:0]
Coding pass type: 00 – Significance propagation pass. 01 – Refinement pass. 10 – Cleanup
pass.

4.2 Code size register – PCI address 0xFFF80004 (DumBus)
Bit [15:0] r Code_Size(byte)

Counter of bytes, output to TMVideoIn during last coding pass. Cleared on
receiving “Code” command.

5. Data formats

5.1 Input/Output bitplanes format

All input data values, data signs and flags are assumed to be formatted in a scan-order bitplane
format. Each data block represents a single bit plane. Since the only allowed codeblock size is 64x64, the
only allowed bit plane size is 64x64/8 = 512 bytes.

Each byte consists of two 4-bit nibbles. Each nibble corresponds to a 4-point vertical “column”, of 64
of which a horizontal scanning “stripe” is constructed. The lower nibble corresponds to “more western”
column, while the higher nibble correspond to “more eastern” column. That is, the first column in a stripe

ALACRON JPEG2000 ENCODER

Page 35 of 35

goes to the least significant nibble, the next column goes to the most significant nibble, the next column
goes to the least significant nibble of the next byte, and so on, in the algorithm scanning order.

Within each nibble, bit 0 (the least significant one) corresponds to the upper (“northern”) point in a
column, bit 3 (the most significant one) corresponds to the lower (“southern”) point.

5.2 Scanning/coding output data format

The output of the CBM function is a variable-size stream of bytes. Each byte is encoded as follows:

Bits 7..6 – Data (only bit 7 is used in most cases, bits 7..6 are used only for “uniform” (runlength)

context).
Bits 4..0 – Context label.

When the context label is 18 (0x12) (“Uniform” context), bits 7..6 of byte represent the run length. In this
case, as per the standard, the most significant bit of this 2-bit runlength should be input first to the
arithmetic encoder.

For all other contexts, the most significant bit (bit 7) of a byte is the data bit that should be input, together
with the context label, to the arithmetic encoder.

At the end of data stream several (5) 0FFh bytes are added to satisfy the minimal data size condition of
port.

6. FPGA Function state indication on FastFrame-1300 LEDs

Led01 - “Idle”,
Led02 – “Load”,
Led03 – “Backup”,
Led04 – “Coding”,
Led06 – always on.

20. TROUBLESHOOTING
There are several things you can try before you call Alacron Technical Support for help.

_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure you didn’t miss a page or a section.

_____ Go back over the software installation to make sure you have installed all necessary software.

_____ Run the Installation User Test to verify correct installation of both hardware and software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the Alacron CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\alacron\alinfo

ALACRON JPEG2000 ENCODER

Page 36 of 36

_____ Compile and run the example programs found in the directory: \usr\alacron\src\examples

_____ Find the appropriate section of the Programmer’s Guide & Reference or the Library User’s
Manual for the particular library and problem you are experiencing. Go back over the steps in the
guide.

_____ Check the programming examples supplied with the runtime software to see if you are using the
software according to the examples.

_____ Review the return status from functions and any input arguments.

_____ Simplify the program as much as possible until you can isolate the problem. Turning off any
operations not directly related may help isolate the problem.

_____ Finally, first save your original work. Then remove any extraneous code that doesn’t directly
contribute to the problem or failure.

21. ALACRON TECHNICAL SUPPORT
Alacron offers technical support to any licensed user during the normal business hours of 9 a.m.
to 5 p.m. EST. We offer assistance on all aspects of processor board and PMC installation and
operation.

21.1 Contacting Technical Support
To speak with a Technical Support Representative on the telephone, call the number below and
ask for Technical Support:

Telephone: 603-891-2750

If you would rather FAX a written description of the problem, make sure you address the FAX to
Technical Support and send it to:

Fax: 603-891-2745

You can email a description of the problem to support@alacron.com

Before you contact technical support have the following information ready:

_____ Serial numbers and hardware revision numbers of all of your boards. This
information is written on the invoice that was shipped with your products.

_____ Also, each board has its serial number and revision number written on
either in ink or in bar-code form.

_____ The version of the ALRT, ALFAST, or FASTLIB software that you are
using.

_____ You can find this information in a file in the directory: \usr\alfast\alinfo
_____ The type and version of the host operating system, i.e., Windows 98.
_____ Note the types and numbers of all your software revisions, daughter card

libraries, the application library and the compiler
_____ The piece of code that exhibits the problem, if applicable. If you email

Alacron the piece of code, our Technical-Support team can try to
reproduce the error. It is necessary, though, for all the information listed

ALACRON JPEG2000 ENCODER

Page 37 of 37

above to be included, so Technical Support can duplicate your hardware
and system environment.

21.2 Returning Products for Repair or Replacements
Our first concern is that you be pleased with your Alacron products.
If, after trying everything you can do yourself, and after contacting Alacron
Technical Support, you feel your hardware or software is not functioning properly,
you can return the product to Alacron for service or replacement. Service or
replacement may be covered by your warranty, depending upon your
warranty.The first step is to call Alacron and request a “Return Materials
Authorization” (RMA) number.This is the number assigned both to your returning
product and to all records of your communications with Technical Support. When
an Alacron technician receives your returned hardware or software he will match
its RMA number to the on-file information you have given us, so he can solve the
problem you’ve cited.

When calling for an RMA number, please have the following information ready:

_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications,
daughter cards, etc.
_____ A clear and detailed description of the problem and when it occurs
_____ Exact code that will cause the failure
_____ A description of any environmental condition that can cause the problem
All of this information will be logged into the RMA report so it’s there for the
technician when your product arrives at Alacron.Put boards inside their anti-static
protective bags. Then pack the product(s) securely in the original shipping
materials, if possible, and ship to:

Alacron Inc.

71 Spit Brook Road, Suite 200
Nashua, NH 03060

USA

Clearly mark the outside of your package:

