ALACRON

FASTSERIES

FASTSERIES LIBRARY
USER’'S MANUAL

FAST CAPTURE
FAST PROCESSING
FAST RESULTS

FASTSERIES PCI BOARD FAST SERIES PMC
FastVision FastMem
Fastimage 1300 Fast4 1300

FastFrame 1300 Fast 1/0 1300

30002-00150

COPYRIGHT NOTICE

Copyright & 2002 by Alacron Inc.

All rights reserved. This document, in whole or in part, may not be copied, photocopied,
reproduced, translated, or reduced to any other electronic medium or machine-readable form
without the express written consent of Alacron Inc.

Alacron makes no warranty for the use of its products, assumes no responsibility for any error,
which may appear in this document, and makes no commitment to update the information
contained herein. Alacron Inc. retains the right to make changes to this manual at any time
without notice.

Document Name: FastSeries Library User's Manuall

Document Number: 30002-00150

Revision History: 1.6 June 3, 2002
Trademarks:

Alacrona is a registered trademark of Alacron Inc.

AltiVecO is a trademark of Motorola Inc.

Channel LinkO is a trademark of National Semiconductor

CodeWarrioré is a registered trademark of Metrowerks Corp.

FastChanneléa is a registered trademark of Alacron Inc.

FastSeriesa is a registered trademark of Alacron Inc.

Fast4a , FastFrame 13004 , Fastimagea , Fastl/Oa, and FastVisiona are registered
trademarks of Alacron Inc.

FireWireO is a registered trademark of Apple Computer Inc.

3MO is a trademark of 3M Company

MS DOSA is a registered trademark of Microsoft Corporation

SelectRAMO is a trademark of Xilinx Inc.

SolarisO is a trademark of Sun Microsystems Inc.

TriMediaO is a trademark of Philips Electronics North America Corp.

Unixa is a registered trademark of Sun Microsystems Inc.

VirtexO is a trademark of Xilinx Inc.

WindowsO, Windows 950, Windows 980, Windows 20000, and Windows NTO
are trademarks of Microsoft

All trademarks are the property of their respective holders.

Alacron Inc.
71 Spit Brook Road, Suite 200
Nashua, NH 03060
USA

Telephone: 603-891-2750
Fax: 603-891-2745

Web Site:
http://www.alacron.com/

Email:
sales@alacron.com, or support@alacron.com

TABLE OF CONTENTS

L00] 0/ 1T |10 1o} 1o ii
LI 1] (S0 O o] o1 1= | PP iii
Manual Figures & Tables ... e e Vil
Other AlACron MANUAIS ... it e e e e e e et e e e e e e e en e viii
[, INTRODUGCTION......cotiiirietirtirieeste st este sttt sttt see st ssesesbessesesseseesesbeseesessesseneesesbeneesesbenesseseeneanes 1
A. PUIE POSE . ettt bttt ettt he e b e e bt bt e a b e ehe e ehe e nhe e ebe e bt eeeeaeeeaeeareenreereaa 1
B. 8T 1= 0T SO TRSRR T S 1
. FASTSERIES LIBRARYotiiiiitiietste ettt sttt ettt st saesassessenaesessenessessansnsessensnss 2
A. Host-Linked and TriMedia-Linked Library VEr SioNnS.........cccccvevvveveneeiesenese e 2
B. Lot 10T L= = RS SRPI 2

. I L= T Y/ 01 TSP 2

S o |- g D - v B 5/ 0= S 2

A L o (o £ T TSP VPP PR USURRPP 3

3. MatriX€S @NA IMAGES.......eceieeeieeeeie ettt e et e ettt e e aestestestesreese e e entesaesteseesaeeseeneenseneans 3

4, Complex Scalars, VECLOrs, and MatliXES.......cccveerereeeeeesierestesessesseseeeessessessessessessessesssessessens 4

D. SUMMANY Of FUNCLIONS.....c..eeeee ettt re et s e e sa e s e s e e e e s 4

1. Standard Calling SEUENCEcceii ettt sttt ae et ee e e besbesaesbe e e eneeneaneas 9

2. Common INPUt aNd OULPUL IMAGESecueeeereeieieriesie ettt ee et see e e e se e e e e e e saeene e e eneees 9

E. FastSeries Library REFEIENCEcccviiceccce ettt 10

F Y o1 I i TSSO 11

Y o155 o OSSO 12

o [0 TSSO 13

F [0 o= - TSSO 14

N 00 TSSO 15
N 410 G TSSO 16

F N a0 |\ TSSO 17

N g To L i OSSOSO 18

AV et b h e AR R R R £ e R e R e R e R e SRR e e ae R R e R e R e eReeh e bt neene e e nnen 19

AAVEB... et b e e b b e e R R e e Rt b e e Rt A e e R Ee e R e A et be s he e be s Re et et neeee 20

F = OSSO 21

o]0 1 SO TPPSPSN 22
BIKIMBN <.ttt b e et h et b e bt b b se b b e nenre e enea 23

o011 o S 24

o i 1 PR 25

o 1 724 o PRSP 26

o 11 TP 27

o £ oS TTRRT 28

o £SO TPRS 29

o] o 11 TP 30

(0100 1Y TP U TP PR USSP 31

1600 011721 B LSO TP P PRSP 32
10000112 &G FO TSSO PR PRSPPI 33

1000 011£5 (TS U PP PRSP 34

L0000\ V) ST U PP PP USSP 35

1000 01V LSO TP PRSP 36

0L 7o [0 PRSP 37
(o200 | o JE TR 38

(oL ot o S 39

CVAIV ettt h et e et e b e b bRt e R £ e e e A £ e A e Eeehe SRt eh £ e ae e R A e e e besbe bt eheeneene e e et es 41
L0LY = o RO PRSP 42
(010720 < J SRR 43
(010 010 YU U TP 44
(0L 0 21U S 45
(010 o U U TR 46
(0L {1 SR 47
(0L 1 7= SRR 48
(01T T o J S 49
DIV ettt bbb R e bR R R R e R R R R R e R R R e eb e e R e ne bt be e bt b e ene s 50
(0 [0 o TR 51
LS 111 0 V2 £ o o O RRTRS 52
1 DSOS U TSP PTSTUPTPPPRURPPRTON 53
L1 TSSOSO PP UPTPPPTURPPPRTON 54
FHTTLG. ...ttt bt b bt b b e b Rt h e E e e Rt R e bt R e bt b e bt R e ene s 55
LD gL P TRRRS 56
LD L1 o TSP RRSRR 57
L TSSOSO ST P PP STUPTPPPTURPRPRTON 58
FIXLB ...ttt ettt bbb b btk b ek R R R R e R R ek R e R R e R ekt e b e bt b e e bt R e ene s 59
FLOBLS ...ttt bbbt b bt b b e bt bbbt bbbt Rt b e e b e bt b e bt n e ene s 60
FLOBELGtttk h bbbt b bt b b e bt b et e bR et eb e e b e ne bt e b e b e nn e ene s 61
L] 1 TSP 62
FIEINED et b bbbt E e b et b et b 63
01 00 TP 64
= o SO 65
0 TSSOSO PP UPTPPOTURPPTRTON 66
L TS (o o 1 SR 67
L TS () o 1 = O PR 68
L TS () o 1 PR 69
L TS () o 1 SR 70
L TS () o 0 = P 71
[TS 00 =00} TP 72
[TS 000 | = 10 0 O U 73
[TS0 | = 10 0 2R 74
[TS0 | = 0 0 TP 75
[TS0 | = 10 0 G U 76
[1110 | = o [T 77
L =TS 78
0= oo USSR 79
F 0= o Tox S USRS 80
0= oot G USSR 81
T gL 4 = o USSR 82
[T £ o o O R 83
[T OSSO P TS UPTPPPRURPRPRTON 85
[USROS U PR UPTPPPRURPTRTON 86
LLUEBS ..ttt b ettt h bt b e bt e a b e eh e e ehe e ehe e eRe e Rt e et eaeeeReaebe e bt eateeaeenaaenreas 87
1 TSP ST PP UPTPPPRURPPTRTON 88
L7 P 89
N TR 90
LYo | PR 91
L 0T PR 92
L7 To PR 93
V=" | T L0 o L= 94
L0 1 P 95

IMIBXITIGYteeteeuteeeeeueesseasseaseesseaueesseesbeeseeeaeeaaeeeaeeeaeeaaeaaeeeaseeaeeeheeeh e e eb e 2R e e aeeeaneeaeeeaeabeenbeennenanesaeeneeas 97
ITIAXVY ...etteeeeiuteeeeeeteeeeeeteeeeseubeeeeaseeeesasseeeeasseeeaaaseeasaasseaeasseaeaasseseeaasseaeansbeaeaanseeeeanseeaeateeeeeanneeeeanreeanan 98
001= 1010 |V TP TSR RURUUROPO 99
0005201V TSSO PRRR 100
(001272 0 | UV U PP RUPTUUPUPURRPR 101
MEBAIANSXS ... ettt et et e et e e et e e et e e etbe e eabeesabeesaseesabeessseesaseesaseessseessseessseensseesseeenseennes 102
IMEBAIANGXS ...ttt ettt e et e et e et e e eab e e et e e sabeesaseesabeessseesaseessseessbeessseessseensseessreensnennns 103
IMEEBAIANTXT .ottt ettt et e et e et e e et e e sab e e e abeeeabeesaseesabeessseesabeesaseesbbeessseessbeesseesseeenseennns 104
T o SRR RROPRRROt 105
001100010 1Y USRI 106
0011 1Y O TR SPSRRUOTP PR 107
TYIMIU ¢ttt e ettt e et e eeabeeeateeeabeeeaseeesbeeeaseesaseeesseessseassseessseessseessseensseessseenseeessseensneenns 108
VIOV e ettt e e ettt e e e te e e e e eaeee e e eabeeeeebaeeeeaaeaeeaabeeeeabeeeeanreeeaaabeaeeantreaeanneas 109
IOV ...ttt ettt e e ettt e e et e e e e e tbe e e e ebee e e e saeeeeeabeeeaaabaeeeeasseeeeanreaaeansaeaeeanneas 110
IVIOVLG. ...ttt ettt et e et e et e e et e e et e e eabeeeaseeeabeeesseesateaasseessseeasseessbeenseeessseenseeesseeensneenns 111
ITIE@INIS ...ttt ettt e e ettt e e e et ee e e ettt eeeebeeeeesseeeaasseeeaaaseeesasseeeaasseseaansseaeansseeesasbeeesanseeaesnnneas 112
IVIUISCAIAL ...ttt ettt ettt e et e e et e e e te e e ate e eateesateeesseesateessseessbeesseeessseensseesseeenseeenns 113
[N Lot RSP RROPRRROt 114
INOELG ...ttt e e et e et e et e e et e e e beeeabeeeabeeeabeeeaseessseaasseessseessseessseansseessseenseeesseeenseeenns 115
(O S F OSSO 116
(O OSSR 117
[010] = SRR 118
POWET SPECIIUM...... ettt sttt b e b e bt a e s ae e sbe e s be e sbeebesaeesaeesaeesaeanbeanbeaas 119
PrEWITE. ..ottt e et e et e e et e e e ate e e aeeeeateeeaseesabeeeaeeeetbeeaaeeeetbeeeaeeeeaeeeeaeeenns 120
L= o SRRSO PR 121
[S 1= OO RROPRRROt 122
REFIECEB......eeeeeeecee ettt e et e et e e e ate e st e e sateeeaseesateesaseestbeesseeessreenseeesseeeaseeenns 123
REFIECELO. ...ttt ettt e et e e et e e et e e e ate e saeeesateesaseesateesaseessseeaseeessseensseessseenseeeses 124
LR o | N USRS 125
REGLULBS...... ettt ettt st he e bt e bt e bt e s beehe e sheesb e e sbeebeeaeesanesaeenaeabeenbena 126
8 1 RSP RRORROPSRROt 127
L (1724 B OO OUERRROPRRROt 128
L8 111 o SRS RROPSRROt 129
L 115 oSSR RROPSRROt 130
10050 |V PUUUPUSRPI 131
RODEITS. ...ttt e e e e e te e et e e s ate e e aee e s ateesaeeesbbeesaeeesateeeaeeesaeeenseeenns 132
ROTBEE. ...t et e et e e ettt e e e ettt e e e ebee e e e aaeeeesabeeeeasteeeeeasseeeaasbeeasanseeaesnneeas 133
ROLBEEB.oee ittt e e e et e e et e e eabe e e beeeateesaaeesateessseesaseeasseessbeesseeessseenseeessseenseeenns 135
L2071 (=1 1 TSROSO ROPSRROt 137
o o1 ISR 139
ST | o J OSSO 140
SUMN. ettt ettt ettt ettt e et e bt eeetee e beeeebeeeabeeesbeeabe e e beeebe e e bee e beeeabeeebeeebeeenbeeebeeebesebeeebeeateeereean 141
SUMNBI ...ttt ettt ettt e ettt et e e ettt e eteeesbeeeeaeeesbaeeabeseabeesabes e besenbesebesaseeebeeenbesanbeeenbesebeeenbeeabeeenreean 142
SUMLGI ...ttt ettt et ettt ettt ettt e st e e eteeesbeeeebeeeebeesabesabesenbeseabesasessbesenbesanbessnbesanbesensesaseesnreean 143
SUMNBE ...ttt ettt et ettt et e e et e e ebe e e sbeeeebeeeebeeebeeabeeebeeeabeeabeeeabeeeabeeebaeebeeebeeenbesabeeereean 144
SUMLGE ...ttt ettt ettt e e e e et e e et e e ebe e e e beeebeeeebeeebeesabeeesesebeeenbesanbeeenbesanbeeenbeseseeenreean 145
Lo [2RSS 146
O ettt ettt e e eteeeeeet—eeeeatteeeeaateeeeaiteeeeeatteeeeaateeeeaatteeeaateteeaatreeeaaeeaeaasteeeeaateeeeaasaeeeaareeaann 147
V< 1 0o PSP UPROR 148
Y= o TSP URUPROR 149
Ol S ittt ettt ettt e e et eeeeeteeeeeeteeeeaatteeeeateeeeeatseeeeatteteeaateeaeaatteeeaateteeatreeeaaseeeaatteeeeaateeeeaanaeeeeanreeaann 150
BN 0 OO 151
TRFBIM2L ...t et e e et e e et e e et e e eabeeeaseesabeeesbeesabeesaseesabeeeaseesateesnseesateeanreesanes 152
LI TR 153

.. 155
D oo
D o
VO o
000 o
B o
B o
D -
N o
P o
T o
D o
D o
e ol
D o
O o
D -
D -
D e
e o
M -
L o
T o
o o
L o
T o
e -y
D -
L o
B o
I o
T o
D o
O ol
gL o
T o
T o)
T o
T o
I o
T o
D oo
T o
T o
D o
D o
L -~
Y -
B o
T o
T .
S o
O o
O o
(VS o= 1 OO

Vi

AV T o PSRRI 210
AV 1.0 VOSSR SRS 211
LV 11| OO RRROPRRRROOt 212
AV 1015 W OSSR SRRSO 213
AV 141 o OSSPSRt 214
VSITIUL ...ttt ettt e et e e et e et e e e beeebe e e beeebe e e beeebeseebeeesesasseeensesesaeansesesbeeenseeeasesenseeesseeensennnns 215
LTS o TR TSRS 216
LTS o [SRR 217
LTS o PRSPPI 218
(VS U o TSRO ROt 219
LTS T o BTSRRI 220
A/ €= o BT OSSO RSSO 221
121 == o OO RRROURRRPOt 222
Do o = | SR 223
Do ¢ TSSOSO RO OSSR 224
Do 1 TSROSO 225
0 = o 1= o | SRS 226
Ao o o 1 TSSOSO RO SRR 227
ZOOMB.... .ot eeteee ettt et e e et e e e ettt e e e eteeeeeaeeeeeasbeeeeaaseeaeaseeeeaasteeeaanseeeeaanseaeaasbeeeeateeeeanaeeeeanreeaann 228
ZOOMLG. ...ttt et e ettt e e et e e e e e e e e etbeeeeeateeeeeaeeeeeaabeeeeaabreeeaanbeeeaahreeeeateeeeaananeaaanreaaann 229
TROUBLESHOOTING ...ttt ettt ste st ate e ste e st e e sane e sate e enne e sateesnreesnteesnreesanas 230
ALACRON TECHNICAL SUPPORT ...ttt ettt eetee ettt e steeeeteeesteeeeaeeestaeesseeestaeenseeessasenseeenns 231

Contacting TeChNICal SUPPOITcceeeeieerese sttt e e e e s 231

Returning Productsfor Repair or Replacements...........ccooeveieiirieneienese e 232

L= 00T 1T o 2 o S 233

Vii

MANUAL FIGURES & TABLES

FIGURE

PAGE

SUBJECT TABLE | PAGE SUBJECT

OTHER ALACRON MANUALS

Alacron manuals cover all aspects of FastSeries hardware and software installation and
operation. Call Alacron at 603-891-2750 and ask for the appropriate manuals from the list below
if they did not come in your FastSeries shipment.

30002-00146
30002-00148
30002-00150
30002-00153
30002-00155
30002-00162
30002-00169
30002-00170
30002-00171
30002-00173
30002-00174
30002-00176
30002-00180
30002-00184
30002-00183
30002-00185

30002-00186
30002-00187

Fastlmage and FastFrame HW Installation Manual

ALFAST Runtime Software Programmer’s Guide & Reference
FastSeries Library User's Manual

Fast I/O Hardware User’'s Manual

FastMem Hardware User’'s Manual

FOIL — FastSeries Object Imaging Library User’'s Manual

ALRT Runtime Software Programmer’s Guide & Reference
ALRT, ALFAST & FASTLIB Software Installation Manual for Linux
ALRT, ALFAST, & FASTLIB Software Installation for Windows NT
FastMem Programmer’s Guide & Reference

FastMem Hardware Installation Manual

Fastlmage 1300 Hardware User's Manual

Fast4 1300 Hardware User's Manual

FastSeries Getting Started Manual

Fastimage 1300 Camera Integration User's Manual

FastVision Hardware User’'s Manual
FastVision Software User's Manual

FastFrame 1300 Hardware User’'s Manual

viii

INTRODUCTION

A. Purpose

The FastSeries Library User's Manual provides calling specifications and descriptions for the
Alacron FastSeries Library of vector and image processing functions.

B. Audience

This manual is intended for technical personnel responsible for developing application
software to run on Alacron boards. This manual assumes familiarity with operating system
commands to configure the software and with the C programming language.

I FASTSERIES LIBRARY

The Alacron FastSeries Library for the FastSeries family of TriMedia-based processor boards is
based on Alacron’s Vector Library (VLIB) and Real-Time Image-Processing Library (RIPL). The
routine names and calling sequences are largely unchanged from the earlier library versions.

The Alacron FastSeries supports Alacron’s FastSeries family of Processor Boards and
Processing Daughter cards

1-D vector functions used in digital signal processing and graphics.

2-D image processing functions that operate on 8-bit unsigned integer, 16-bit
unsigned integer, and 32-bit floating point image data.

This section provides an overview of the FastSeries Library data types and functions. Function
calling sequences, return values and other specifics are provided in the next chapter.

A. Host-Linked and TriMedia-Linked Library Versions

The FastSeries Library is distributed with two versions, one that links to a TriMedia program
and another that links instead to the Host (Pentium) program.

TriMedia programs that wish to use the FastSeries Library should link to libfastlib.a.
Host (Pentium) programs that wish to access the FastSeries Library functions should link to
libfastlib.lib.

B. Include File

Application programs using the FastSeries Library should include <fastlib.h>, which is in the
%FASTLIB%\include installation directory.

C. Data Types

1. Scalar Data Types
a) 8-bitinteger (unsi gned char)

8-bit integer data types are defined as one byte unsigned integer elements that range
from O to 255.

b) 16 bit integer (unsi gned short)

16 bit integer data types are defined as two byte unsigned integer elements that
range from 0 to 65535.

c) Float (fl oat)

Float data types are defined as IEEE standard 32 bit single precision floating point
numbers.

d) Packed Binary Least-to-most (I 2m)

Packed binary I2m are binary images packed 8 binary pixels to each byte, ordered
from least significant bit to most significant bit.

do - pixel n
dl - pixel n+l1

d7 - pixel n+7

e) Packed Binary Most-to-least (n2l)

Packed binary m2l are binary images packed 8 binary pixels to each byte, ordered
from most significant bit to least significant bit.

d0 - pixel n+7
dl - pixel n+6

67 - pixel n

2. Vectors

A vector is a one-dimensional array of values. Its elements occupy successive locations
in memory. A vector reference in the algorithms has the form:

afi]

Where the integer index i range from 0 to n-1 (n being the total number of elements in the
vector). A vector can be made of integer, real, or complex values.

a) Vector Strides

Many FastSeries Library functions contain vector stride arguments to specify which
elements of a vector are to be processed. Vector strides allow the functions to
handle individual rows of matrices or operate on complex vectors as real vectors.

b) Element Stride

Vector functions use an element stride for one or more argument vectors, shown as
argument name ia for the stride of argument a, ib for the stride of argument b, and so
on.

An element stride of k specifies that every kth real element of a vector (physical
indexes 0, k, 2k,...) is to be processed. The element stride refers to the spacing of
the real values in the vector array. To reference every element of a vector of real
values, use a stride of 1. To reference every element in a vector of complex values
(or every other element in a real vector), use a stride of 2.

c) Row Stride

The row stride allows a function to handle a sub-matrix within a full matrix. The row
stride parameter specifies the number of full matrix elements between successive
elements in a column of the sub-matrix.

For example, consider a 50x50 sub-matrix within a 100x100 full matrix. The distance
between the first element in row 0 and the first element in row 1 of the sub-matrix is
100 (the row size of the full matrix). The row stride for this sub-matrix would be 100.
The row stride is different from the sub-matrix row size, which would be 50 in this
example.

3. Matrices and Images

A matrix or image is a two-dimensional array of values defined by a pointer (or array
address), a vertical stride, the number of rows and the number of columns. These values
may either be real or complex. The vertical stride defines the address increment from one
row of the array to the next, and allows the referencing of “sub-arrays” of the image.

The FastSeries Library uses row-major order. Successive locations in memory contain
successive elements of a row, until the end of the row, which is followed by the first
element of the next row. If a program desires column-major order, swap the row and
column input arguments to achieve the desired result.

4. Complex Scalars, Vectors, and Matrices

Some routines use type complex scalars, vectors, or matrices. A complex value in the
FastSeries Library is a pointer to an array of floats:

float *a

The length of the array determines the “type” of the complex value. A complex scalar has
length 2, one real value and one imaginary value. A complex vector has length 2*N for N
complex vector elements. A complex matrix or image has 2*N*M for M rows of 2*N
complex elements per row. The vector and matrix values use a corresponding stride to
specify the values for M and N.

D. Summary of Functions

The FastSeries Library contains the following functions:

Function
AbsDiff
AbsSum
Add
AddScalar
And16
And8
AndNot16
AndNot8
ve
Avel6
Ave8
bldwts
blkman
cdotpr
cfft
cfft2d
cfftb
cfftsc
cfftss
cimul
conv
conv
Conv2d
Conv3x3
Conv5x5
Conv7x7
ConvFFT
cvadd
cvcomb
cvcon;j
cvesml
cvdiv
cvexp
cvmags
cvmov
cvmul
cvneg
cvrcip
cvsma

Description

Absolute value of difference

Sum of absolute values

Add images

Add scalar to image

Logical and of 16 bit image

Logical and of 8-bit image

Logical AND 16 bit image with complement
Logical AND 8-bit image with complement
Accumulate average of images
Accumulate average of 16 bit image
Accumulate average of 8-bit image
build FFT weights

blackman window multiply

complex dot product

complex FFT (in-place)

complex 2D FFT (in-place)

complex FFT (not-in-place)

complex FFT scale

complex FFT scale with stride
complex image multiplication

linear convolution

convolution and correlation

general 2D convolution

3x3 convolution

5x5 convolution

7x7 convolution

convolution via FFT

complex vector add

complex vector combine

complex vector conjugate

complex vector complex scalar multiply
complex vector divide

complex vector exponential

complex vector magnitude squared
complex vector move

complex vector multiply

complex vector negate

complex vector reciprocal

complex vector scalar multiply and add

cvsub

Div

dotpr
fastlibversion
Fill

Fill16

Fill8

Fix16

Fix8

fixinta

fixintb
Floatl6
Float8

fltinta

fltintb

hamm

hann

hist
HistoEquall0
HistoEquall2
HistoEquall4
HistoEquall6
HistoEqual8
Histogram
Histogram10
Histogram12
Histogram14
Histogram16
Histogram8
Ifree

Imalloc
Imalloc16
Imalloc8
Interlace
Kirsch

Lut8

Lut8f

Lut8s

Lutf

Iveq

Ivge

Ivgt

Ivhe

Ivnot

matinv

Max
maxmgv
maxv
meamgv
measqv
Median

complex vector subtract

Divide images

dot product

Return FastSeries Library version string
Fill float image with constant

Fill 16 bit image with constant

Fill 8-bit image with constant

Convert float image to 16 bit integer
convert float image to 8-bit integer

fix pixels in format A (high/low)

fix pixels in format B (low/high)

Convert 16 bit integer image to float
Convert 8-bit integer image to float
float pixels in format A (high/low)

float pixels in format B (low/high)
hamming window multiply

hanning window multiply

histogram

Histogram Equalization on 10 bit image
Histogram Equalization on 12 bit image
Histogram Equalization on 14 bit image
Histogram Equalization on 16 bit image
Histogram Equalization on 8-bit image
Calculate histogram of float image
Calculate histogram for 10 bit image
Calculate histogram for 12 bit image
Calculate histogram for 14 bit image
Calculate histogram for 16 bit image
Calculate histogram for 8-bit image
Free dynamically allocated image
Dynamically allocate a float image
Dynamically allocate a 16-bit image
Dynamically allocate an 8-bit image
Convert non-interlaced image to interlaced image
Kirsch operator

Perform lookup on 8-bit image to 8-bit image
Perform lookup on 8-bit image to float image
Perform lookup on 8-bit image to 16 bit image
Perform lookup on float image to float image
logical vector equal

logical vector greater than or equal
logical vector greater than

logical vector not equal

logical vector not

matrix inverse

Maximum of images

maximum magnitude of a vector
maximum element of a vector

mean of vector element magnitudes
mean of vector element squares
Median filter

Min
minmgv
minv
mmul
Mov
Mov16
Mov8
mtrans
MulScalar
Not16
Not8
Oril6

Or8

polar
PowerSpectrum
Prewitt
rect
Reflect
Reflect16
Reflect8
ReglLut8®
ReglLut8s *
rfft

Rfft2d
rfft2d

rfftb

rfftsc
rmsqv
Roberts
Rotate
Rotatel6
Rotate8
Sobel
Sub

Sum
Sum16f
Sum1l6i
Sum8f
Sumsi
svdiv

sve
svemg
svesq
Svs

Thr8
Thr812m
Thr8ma2l|
Uninterlace

Minimum of images

minimum magnitude element of a vector
minimum element of a vector

real matrix multiply

Move float image

Move 16 bit image

Move 8-bit image

matrix transpose

Multiply image by scalar

Compute complement of 16 bit image
Compute complement of 8-bit image
Logical OR 16 bit image

Logical OR 8-bit image

rectangular to polar conversion

power spectrum

Prewitt operator

polar to rectangular conversion
Reflect float image (vertical, horizontal, diagonal)
Reflect 16 bit image (vertical, horizontal, diagonal)
Reflect 8-bit image (vertical, horizontal, diagonal)
Allocate 8-Bit Lookup Table

Allocate 16-Bit Lookup Table

real to complex FFT (in-place)

real 2d FFT

real to complex 2D FFT (in-place)

real to complex FFT (not-in-place)
real FFT scale and format

root mean square of vector elements
Roberts operator

Rotate float image

Rotate 16 bit image

Rotate 8-bit image

Sobel operator

Subtract images

Sum float image to float image

Sum 16 bit image to float image

Sum 16 bit image to 32 bit integer
Sum 8-bit image to float image

Sum 8-bit image to 32 bit image
scalar vector divide

sum of vector elements

sum of vector element magnitudes
sum of vector element squares

sum of vector signed element squares
Threshold 8-bit image to 8-bit image

Threshold 8-bit image to packed binary 12m (Isb to msb)
Threshold 8-bit image to packed binary m2l (msb to Isb)

Convert interlaced image to non-interlaced image

uprfft2
vabs
vadd
valog10
vam
vand
vatan
vatan2
vclip
vcelr
VCOoS
vdist
vdiv
venvip
veqv
vexp
VAill
vfix
vfix
vfix16
vfix16
Vfix32
vfix32
vfix8
vfix8
Vil
vflt
vflt16
vflt16
vflt32
vflt32
vflt8
vflt8
vfiltul6
vfltule
vfltu8
vfltu8
vfrac
vgathr
vimag
vlim
viog
viog10
vma
vmax
vmaxmg
vmin
vminmg
vmov
vmsa
vmsb
vmul
vnabs
vneg
vor

vpoly

unpack results of rfft2d

vector absolute value

vector add

vector anti-log base 10

vector add and multiply

vector logical AND

vector arctangent

vector two argument arctangent

vector clip

vector clear

vector cosine

vector distance

vector divide

vector envelope

vector logical EQUIVALENCE

vector exponential

vector fill with constant

convert a float vector to 32-bit integer
vector fix to integer

convert a float vector to 16-bit integer
vector fix to short integer

convert a float vector to 32-bit long

vector fix to long integer

convert a float vector to 8-bit integer
vector fix to 8 bit integer

convert a 32-bit integer vector to float
vector float

convert a 16-bit signed integer vector to float
vector float short integers

convert a 32-bit signed integer vector to float
vector float long integers

convert an 8-bit singed integer vector to float
vector float byte integers

convert a 16-bit unsigned integer vector to float
vector float unsigned short integers
convert an 8-bit unsigned integer vector to float
vector float unsigned byte integers

vector truncate to fraction

vector gather

extract imaginaries of complex vector
vector limit

vector natural logarithm

vector base 10 logarithm

vector multiply and add

vector maximum of two vectors

vector maximum magnitude of two vectors
vector minimum of two vectors

vector minimum magnitude of two vectors
vector move

vector multiply and scalar add

vector multiply and subtract

vector multiply

vector negative absolute value

vector negate

vector logical OR

vector polynomial evaluation

vramp
vrcip
vreal
vsadd
vsbm
vscal
vscatr
vsdiv
vsin
vsma
vsmb
vsmsa
vsmsb
vsmul
vs(q
vsqgrt
vss(q
vsub
vswap
vtan
vthr
vthresh
Xgradient
Xorl6
Xor8
Ygradient
Zoom
Zoom16
Zoom8

vector fill with ramp

vector reciprocal

extract reals of complex vector
vector scalar add

vector subtract and multiply
vector scale and fix

vector scatter

vector scalar divide

vector sine

vector scalar multiply and add
vector scalar multiply and subtract
vector scalar multiply and scalar add
vector scalar multiply and subtract
vector scalar multiply

vector square

vector square root

vector signed square

vector subtract

vector swap

vector tangent

alias for vector threshold

vector threshold

X gradient filter

Logical XOR 16 bit image

Logical XOR 8-bit image

Y gradient filter

Zoom float image

Zoom 16 bit image

Zoom 8-bit image

1. Standard Calling Sequence

The FastSeries Library uses a standard two or three operand calling sequence for unary
and binary operators; each function has one or more input image data arguments and
usually one output image argument. The standard two operand calling sequence is:

fctn8 (unsigned char a[], int ia, unsigned char c[], int ic, int nr, int nc);
The standard three operand calling sequence is:
fctn (float a[], int ia, float b[], int ib, float c[], int ic, int nr, int nc);

In these cases, the arguments a[] and b[] reference input arguments, c[] references the
output argument, nr and nc reference the number of rows and columns to be operated
on. The arguments ia, ib, and ic are the vertical stride for a, b, and c. The following
examples show a simple program that declares image data arrays and uses sub-arrays.

#i nclude <al fast-1ibs. h>

#def i ne NROAN5512

#def i ne NCOLS512

fl oat a[NROAS* NCOLS] ;

fl oat b[NROAS* NCOLS] ;

float c[NROAS*NCOLS] ;

/*--- sanplel - add image a to be giving ¢ ---*/
voi d sanpl el void

Add (a, NCOLS, b, NCOLS, c, NCOLS, NROW5, NCOLS);

}
/*--- sanple2 - add upper-left 128x128 subi mage of a to upper
128x128

subi mage of b to lower-right 128x128 subi mage of ¢ ---*/
voi d sanpl e2 void

Add (a, NCOLS, b, NCOLS, c+128*NCOLS+128, NCOLS, 128, 128);

2. Common Input and Output Images

Many FastSeries Library functions may be called with the output image data specified
being the same as one of the input images. For example Add may be called with the
form:

Add (a, NCOLS, b, NCOLS, a, NCOLS, NROWS, NCOLS);

Not all functions may be called in this manner. Functions that disallow common input
and output image data:

Conv3x3, Conv5x5, Conv7x7

Kirsch, Prewitt, Roberts, Sobel

Median, Median3x3, Median5x5, Median7x7
Rotate, Rotate8, Rotatel6

Xgradient, Ygradient

E. FastSeries Library Reference

This chapter provides detailed documentation on the functions in the FastSeries Library.
Each function is listed on a separate page showing input arguments, output arguments,
strides, and execution functionality.

10

AbsDiff

AbsDiff Absolute value of difference

C Usage

#i ncl ude <fastlib. h>

void AbsDiff (float *a, int ia, float *b, int ib, float *c, int
ic,

int nr, int nc)

Description

The AbsDiff function computes the absolute value of the difference between two
input images. The following C fragment describes the function:

void AbsDiff (float *a, int ia, float *b, int ib, float *c, int
ic, int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
c[i*ic+j] = fabs (a[i*ia+j]-b[i*ib+]);
}

11

AbsSum

AbsSum Sum of absolute values

C Usage
#i ncl ude <fastlib. h>

void AbsSum (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

Description

The AbsSum function computes the sum of the absolute values between two
input images. The following C fragment describes the function:

voi d AbsSum (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j ++)
c[i*ic+j] = fabs (a[i*ia+j]) + fabs
(b[i*ib+j]);
}

12

Add

Add Add images

C Usage
#i ncl ude <fastlib. h>

void Add (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

Description

The Add function computes the arithmetic sum of two input images. The
following C fragment describes the function:

void Add (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[i*ic+j] = a[i*ia+j]+b[i*ib+j];
}

13

C Usage

AddScalar

AddScalar - Add scalar to image

#i ncl ude <fastlib. h>

voi d AddScal ar (float *a, int ia, float *b, float *c, int ic, int
nr,

int nc)

Description

The AddScalar function adds to each element of image a the scalar given by
argument b, placing the output at image c. The following C code fragment
describes the function:

voi d AddScal ar (float *a, int ia, float *b, float *c, int ic, int
nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[i*ic+j] = a[i*ia+j] + *b;
}

14

And8

And8 Logical and of 8-bit image

C Usage

#i ncl ude <fastlib. h>
void And8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c, int ic, int nr, int nc);

Description

The And8 function performs a logical “and” of each element of image a with the
corresponding element in image b, placing the output at image c. The following
C code fragment describes the function:

void And8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c¢, int ic, int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
cl[ic*i+j] = a[ia*i+j] & b[ib*i+];
}

15

And16

And16 Logical and of 16 bit image

C Usage

#i ncl ude <fastlib. h>
voi d And16 (unsigned short *a, int ia, unsigned short *b, int ib,
unsi gned short *c, int ic, int nr, int nc)

Description

The And16 function performs a logical “and” of each element of image a with the
corresponding element in image b, placing the output at image c. The following
C code fragment describes the function:

voi d And16 (unsigned short *a, int ia, unsigned short *b, int ib,
unsi gned short *c, int ic, int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
clic*i+j] = a[ia*i+j] & b[ib*i+j];
}

16

AndNot8

AndNot8 - Logical AND 8-bit image with complement
C Usage
#i ncl ude <fastlib. h>
voi d AndNot 8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c¢, int ic, int nr, int nc)
Description

The AndNot8 function performs a logical “and” of the complement of each element of
image a with the corresponding element in image b, placing the output at image c.
The following C code fragment describes the function:

#i ncl ude <fastlib. h>

voi d AndNot 8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c, int ic, int nr, int nc)

L
int i;
int j;
for (i =0; i < nr; i++)
for (j =0; j <nc; j++)
clic*i+j] = ~a[ia*i+j] & b[ib*i+j];
}

17

C Usage

AndNot16

AndNot16 Logical AND 16 bit image with complement

#i ncl ude <fastlib. h>

voi d AndNot 16 (unsigned short *a, int ia, unsigned short *b, int
ib,

unsi gned short *c, int ic, int nr, int nc);

Description

The AndNot16 function performs a logical “and” of the complement of each
element of image a with the corresponding element in image b, placing the output
atimage c. The following C code fragment describes the function:

voi d AndNot 16 (unsigned short *a, int ia, unsigned short *b, int
ib, unsigned short *c, int ic, int nr, int nc)

int i;
int j;
for (i =0; i <nr; i +4+)
for (j =0; j < nc; j +4)
c[ic*i+j] = ~a[ia*i+j] & b[ib*i+j];

18

Ave

Ave Average float image

C Usage

#i ncl ude <fastlib. h>
void Ave (float *a, int ia, float *b, int ib, float *c, float *d,

int id, int nr, int nc);

Description

The Ave function performs a “weighted average” of the two input float images.
Each element of image a is scaled by *c and added to the corresponding
element in image b, which has been scaled by 1.0 - *c. The resultant image is
placed at image d. The following C code fragment describes the function:

#i ncl ude <fastlib.h>
void Ave(float *a, int ia, float *b, int ib, float *c, float *d,
int id, int nr, int nc)

L
int i;
int j;
float w1, w?2;
wil = *c; / weighting fraction for |atest inage */
w2 =1.0 - w1l
for (i =0; i <nr; i ++)
for (j =0; j <nc; j +4)
{
dli*id+j] = a[i*ia+j] * wtl + b[i*ib+] * wt2;
}
}

19

C Usage

Ave8

Ave8 Average 8-bitimage

#i ncl ude <fastlib. h>

voi d Ave8 (unsigned char *a, int ia, unsigned char *b, int ib,
float *c, unsigned char *d,

int id, int nr, int nc);

Description

The Ave8 function performs a “weighted average” of the two input byte images.
Each element of image a is scaled by *¢ and added to the corresponding
element in image b, which has been scaled by 1.0 - *c. The resultant image is
placed at image d. The following C code fragment describes the function:

#i nclude <fastlib. h>
voi d Ave8(unsigned char *a, int ia, unsigned char *b, int ib,
float *c, unsigned char *d,
int id, int nr, int nc)
{

int i;
int j;
float w1, wt?2;

wil = *c; / weighting fraction for |atest inage */
w2 =1.0 - w1l
for (i =0; i <nr; i ++4)
{
for (j =0; j <nc; j +4)
dl[i*id+j] = (unsigned char)(a[i*ia+j] * w1l +
bl[i*ib+] * w2);
}
}

20

Avelb

Avel6 Average 16 bit image

C Usage

#i ncl ude <fastlib. h>
voi d Avel6 (unsigned short *a, int ia, unsigned short *b, int ib,
float *c, unsigned short *d, int id, int nr, int nc);

Description

The Avel6 function performs a “weighted average” of the two input 16 bit
images. Each element of image a is scaled by *c and added to the
corresponding element in image b, which has been scaled by 1.0 - *c. The
resultant image is placed at image d. The following C code fragment describes
the function:

voi d Avel6(unsigned short *a, int ia, unsigned short *b, int ib,
float *c, unsigned short *d,
int id, int nr, int nc)

{
int i;
int j;
float w1, w2;
wl = *c; / weighting fraction for |atest inmage */
w2 =1.0 - wil;
for (i =0; i <nr; i ++)
for (j =0; j <nc; j ++)
dli*id+j] = (unsigned short)(a[i*ia+tj] * w1l +
bli*ib+] * w2);
}
}

21

bldwts

Summary

bldwts build FFT weights

C Usage

void bldws (int n);
Arguments

n maximum FFT length; a power of 2
Description

Function bldwts creates a weight vector table used by the FFT routines (cfft,
cfftb, rfft2d, etc.) consisting of complex exponential values.. Storage for the
weight vector is allocated and freed dynamically off the memory heap.

Function bldwts must be called before any of the FFT routines are used. bldwts
may be called multiple times with different table (i.e., vector) sizes, although
generally bldwts is only called once with the largest size required by the
application.

For multidimensional transforms, argument n to bldwts is determined by the
largest of the array dimensions (in terms of complex elements) for the FFT. In
the 1-D case, the argument n should be the largest vector length, in terms of
complex elements, used by the application. Argument n must be a power of 2.

Example

#i ncl ude <fastlib. h>
int n = 1024;

bl dwt s(n);

22

blkman

{xe”bldwts” }{xe “blkman”}

Summary
blkman blackman window multiply
C Usage
void blkman (float *a, int ia, float *c, int ic, int n);

Arguments

A Pointer to real vector a

ia stride for vector a

c Pointer to results in real vector ¢

ic stride for vector c

n element count of vectors
Description

blkman multiples real vector a by a Blackman window to condition it for
performing an FFT according to the algorithm

for i=0 to n-1
c[i] =a[i] * (0.42 - 0.5*cos(i*2*pi/n) +
0.08*cos(i*4*pi/n))

For other functions used for conditioning signals prior to performing an FFT, see

the functions hamm and hann.

23

cdotpr

{xe”cdotpr”}{xe “blkman”}

Summary
cdotpr complex dot product
C Usage
void cdotpr (float *a, int ia, float *b, int ib, float *c, int n);
Arguments
a pointer to complex vector a
ia stride for vector a expressed in floats
b pointer to complex vector b
ib stride for vector b expressed in floats
c pointer to result in complex scalar ¢
n element count of vectors
Description

cdotpr computes the complex dot product of complex vectors a and b and stores
the results in complex scalar ¢ using the algorithm:

real (c)
i mag(c)

sum(real (a[i]) * real (b[i]) - imag(a[i]) * imag(b[i]))
sun(real (a[i]) * imag(b[i]) + imag(a[i]) * real (b[i]))

Note that the stride arguments ia and ib are expressed in floats. To process a
contiguous complex array, stride should be 2. To skip every other complex
element, stride should be 4.

24

cfft

{xe” cfft” {xe “blkman”}

Summary

C Usage

Arguments

Description

cfft complex FFT (in place)

void cfft (float *a, int n, int direction);

a pointer to complex vectors a containing real and imaginary
elements. The results are stored in a.

n element count of vector
must be a power of 2

direction processing mode

direction = 1 for forward FFT
direction = -1 for inverse FFT

cfft computes either a forward or inverse complex FFT on the data in complex
vector a and stores the results back into vector a. direction determines the form
of the FFT.

If direction = 1, the function performs a forward FFT. The results are not scaled.
(They may be scaled using cfftsc to multiply by 1/n.) If direction = -1, the function
performs an inverse FFT. In this case, the results do not need to be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT vector length required in calls to
the cfft routine. In other words, bldwts should be set up with the greatest value
of argument n that will be used during the application.

25

cfft2d

{xe” cfft2d” }{xe “blkman”}

Summary
cfft2d complex 2D FFT (in place)
C Usage
void cfft2d (float *a, int nr, int nc, int direction);
Arguments
a input/output complex matrix a
nr number of rows in a; power of 2
nc number of columns in a; power of 2
direction processing mode
direction = 1 for forward FFT
direction = -1 for inverse FFT
Description

cfft2d computes either a forward or inverse complex two dimensional FFT on the
data in complex matrix a and stores the results back into matrix a.

Argument direction determines the form of the FFT. If direction = 1, the function
performs a forward FFT. The results are not scaled, and they may be scaled
using cfftsc to multiply by 1/(nr*nc). If direction = -1, the function performs an
inverse FFT. The results do not need to be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT length required in calls to the
cfft2d routine. This would be the greater of nr and nc.

Note that the FFT functions perform on row-major data. Users with data in
column-major order may reverse the row and column arguments to produce the
desired effect.

26

cfftb

{xe” cfftb” }{xe “blkman”}

Summary
cfftb complex FFT (not in place)
C Usage
void cfftb (float *a, float *c, int n, int direction);
Arguments
A pointer to complex vector a.
C pointer to results in complex vector c.
N element count of vector. must be a power of 2
direction processing mode
direction = 1 for forward FFT
direction = -1 for inverse FFT
Description

cfftb computes either a forward or inverse complex FFT on the data in complex
vector a and stores the results into complex vector c. direction determines the
form of the FFT.

If direction = 1, the function performs a forward FFT. The results are not scaled,
and they may be scaled using cfftsc to multiply by 1/n. If direction = -1, the
function performs an inverse FFT. The results do not need to be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT length required in calls to the
cfftb routine. In other words, bldwts should be called with no less than the
maximum value for argument n that will be used by the application.

27

cfftsc

{xe” cfftsc” }{xe “blkman”}

Summary
cfftsc complex FFT scale
C Usage
void cfftsc (float *c, int n);
Arguments
c complex vector c. results stored in vector ¢
n element count of vector
Description

cfftsc scales the FFT in complex vector c by dividing the real and imaginary part
of each element by n and storing the results back into vector c.

28

cfftss

{xe” cfftss” {xe “blkman”}

Summary
cfftss complex FFT scale with stride
C Usage
void cfftss (float *c, int ic, int n);
Arguments
c pointer to complex vector c. results stored in vector ¢
ic stride for vector ¢ expressed in floats
n element count of vector
Description

cfftss uses the stride value to scale elements of the FFT in complex vector ¢ by
dividing the real and imaginary part of the elements by n and storing the results
back into vector c. Note that the stride argument is expressed in floats. To
process a contiguous complex array, stride should be 2. To skip every other
complex element, stride should be 4.

29

cimul

{xe”cimul”}{xe “blkman”}

Summary
cimul complex image multiplication
C Usage
void cimul (float *a, float *b, float *c, int nrows, int ncols,
int direction);
Arguments
a pointer to complex array a
b pointer to complex array b
c pointer to results in complex array ¢
nrows row count of arrays a, b, and c
ncols column count of arrays a, b, and ¢
direction processing mode
direction = 1 for normal processing
direction= -1 for conjugate processing
Description

cimul multiplies two complex arrays a and b and stores the results in complex
array c using the algorithm

for i=0 to nrows-1, j=0 to ncols-1
if direction ==

real (c[i,j]) =real (a[i,j])*real (b[i,j]) -

, . imag(afi, j]) * img(bli,j])

imag(cli,j]) = real(ali,j])*img(bli.j]) +
imag(ali,j]) * real(b[i,j])

el se

real (c[i,j]) =real (a[i,j])*real (b[i,j]) +

_ o tmag(ali,j]) * imag(bli,j])

imag(c[i,j]) = -real(ali,j])*img(b[i,j]) +
imag(ali,jl) * real(b[i,j])

30

conv

{xe”conv”}{xe “blkman”}

Summary
Conv convolution and correlation
C Usage
void conv (float *a, int ia, float *b, int ib, float *c, int ic,
int nc, int nb, int ndec);
Arguments
a pointer to real vector a of. length (nc-1)*ndec+nb
ia stride for vector a
b pointer to real vector b
ib stride for vector b
ib > 0 to perform correlation
ib < 0 to perform convolution
c pointer to results in real vector ¢
ic stride for vector ¢
nc element count of vector ¢
nb element count of vector b
ndec decimation factor
Description

conv either performs the convolution or correlation of real vectors a and b and
stores the results in real vector c. If ib is positive, the function performs the
correlation. If ib is negative, the function performs a convolution. Note that b
must point to the last element in the vector in that case. The ndec decimation
factor specifies what portion of the output value is actually computed. A value of
ndec =3 indicates that only every third possible output value is computed.

The algorithm for correlation is

for i=0 to nc-1, j=0 to nb-1
c[i] = sum a[ndec*i + j*ia] * b[j*ib])

The algorithm for convolution is
for i=0 to nc-1, j=0 to nb-1
c[i] = sun(a[ndec*i + j*ia] * b[nb-(j-1)*ib])

31

Conv2D

Conv2D - General 2D convolution
C Usage
#i ncl ude <fastlib. h>
void Conv2D (float *a, int ia, float *knl, int kr, int kc,
float *c, int ic, int nr, int nc);
Description

The Conv2D function performs a two-dimensional convolution of the input kernel,
knl, with the input image a. The output image is placed at c.

32

Conv3x3

Conv3x3 3x3 convolution

C Usage

include <fastlib.h>
void Conv3x3 (float *a, int ia, float *c, int ic, int nr, int nc,
float *knl);

Description

The Conv3x3 function performs a 3 by 3 convolution of image a with the 3x3
kernel located in knl, placing the output at image c.

33

C Usage

Convbx5

Conv5x5 5x5 convolution

#i ncl ude <fastlib. h>

voi d Convbx5 (float *a, int ia, float *c, int ic, int nrow, int
ncol ,

float *knl);

Description

The Conv5x5 function performs a 5 by 5 convolution of image a with the 5x5
kernel located in knl, placing the output at image c.

34

C Usage

Conv7x7

Conv7x7 7x7 convolution

#i ncl ude <fastlib. h>

void Conv7x7 (float *a, int ia, float *c, int ic, int nrow, int
ncol ,

float *knl);

Description

The Conv7x7 function performs a 7 by 7 convolution of image a with the 7x7
kernel located in knl, placing the output at image c.

35

ConvFFT

ConvFFT Convolution using FFT on float image

C Usage
#i ncl ude <fastlib. h>

void ConvFFT(float *a, int ia, float *knl, int kr, int kc,
float *c, int ic, int nr, int nc);

Description

The ConvFFT performs a circular convolution of image a with a kernel (knl) by
the multiplication of the two functions in the frequency domain. The output image
is placed at c.

36

cvadd

{xe”cvadd” }{xe “blkman”}

Summary
cvadd complex vector add
C Usage
void cvadd (float *a, int ia, float *b, int ib, float *c,
int ic, int n);
Arguments
A pointer to complex vector a
la stride for vector a expressed in floats
b pointer to complex vector b
ib stride for vector b expressed in floats
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors
Description

cvadd adds complex vectors a and b and stores the results in complex vector ¢
using the algorithm below.

for i=0 to n-1
real (c[i])
imag(c[i])

real (a[i]) + real (b[i])
imag(ali]) + imag(b[i])

Note that the stride argument(s) to complex vectors are expressed in floats. To
process a contiguous complex array, stride should be 2. To skip every other
complex element, stride should be 4.

37

cvcomb

{xe”cvcomb” }{xe “blkman”}

Summary
Cvcomb complex vector combine
C Usage
void cvconb (float *a, int ia, float *b, int ib, float *c,
int ic, int n);
Arguments
a pointer to real vector a
ia stride for vector a
b pointer to real vector b
ib stride for vector b
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors
Description

cvcomb uses the elements of real vectors a and b to form complex vector c.

The real elements of ¢ are taken from vector a; the imaginary elements are taken
from vector b. Note that the stride argument(s) to complex vectors are expressed
in floats or reals. To process a contiguous complex array, stride should be 2. To
skip every other complex element, stride should be 4.

for i=0 to n-1
real (c[i])
imag (c[i])

a[i]
b[i]

38

cvconj

{xe”cvconj’ H{xe “blkman”}

Summary

C Usage

Arguments

Description

cvcon;j complex vector conjugate

void cvconj (float *a, int ia, float *c, int ic, int n);

a pointer to complex vector a

ia stride for vector a expressed in floats
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors

cvconj conjugates the element of complex vector a and stores the results in
complex vector c. Note that the stride argument(s) to complex vectors are
expressed in floats or reals. To process a contiguous complex array, stride
should be 2. To skip every other complex element, stride should be 4.

for i=0 to n-1
real (c[i])
imag(c[i])

real (a[i])
-imag(ali])

39

cvcesmli

{xe”cvcsml”}{xe “blkman”}

Summary

cvesml complex vector complex scalar multiply
C Usage

void cvesm (float *a, int ia, float *b, float *c, int ic, int n);

Arguments

a pointer to complex vector a

ia stride for vector a expressed in floats

b pointer to complex scalar b

c pointer to results in complex vector ¢

ic stride for vector ¢ expressed in floats

n element count of vectors
Description

cvesml multiplies elements of complex vector a by complex scalar b and stores
the result into complex vector ¢ using the algorithm below. Note that the stride
arguments to complex vectors are expressed in floats or reals. To process a
contiguous complex array, stride should be 2. To skip every other complex
element, stride should be 4.

for i=0 to n-1
real (c[i])
imag(cli])

real (a[i])*real (b) - imag(a[i])*img(b)
real (a[i])*imag(b) + imag(a[i])*real (b)

40

cvdiv

{xe”cvdiv”}{xe “blkman”}

Summary
cvdiv complex vector divide
C Usage
void cvdiv (float *a, int ia, float *b, int ib, float *c,
int ic, int n);
Arguments
a pointer to complex vector a
ia stride for vector a expressed in floats
b pointer to complex vector b
ib stride for vector b expressed in floats
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors
Description

cvdiv divides complex vector a by complex vector b and stores the results in
complex vector c. The vector b may not contain elements with both real and
complex values of 0.0. Note that the stride argument(s) to complex vectors are
expressed in floats or reals. To process a contiguous complex array, stride
should be 2. To skip every other complex element, stride should be 4. The
division algorithm is

for i=0 to n-1
real (c[i]) = (real(a[i]) * real(b[i]) + imag(a[i]) *
Limag(b[i])) /(real(b[i])**2 + imag(b[i])**2)
imag(c[i]) = (imag(a[i]) * real(b[i]) - real(a[i]) *
imag(b[i])) /(real (b[i])**2 + imag(b[i])**2)

41

cvexp

{xe”cvexp” }{xe “blkman”}

Summary

cvexp complex vector exponential
C Usage

void cvexp (float *a, int ia, float *c, int ic, int n);

Arguments

a pointer to real vector a

ia Stride for vector a

c pointer to results in complex vector ¢

ic Stride for vector c expressed in floats

n element count of vectors
Description

cvexp computes the complex exponential of real vector a and stores the results
in complex vector ¢ according to the algorithm:

for i=0 to n-1
real (c[i])
imag(cli])

cos(ali])
sin(afi])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

42

cvmags

{xe”cvmags” }{xe “blkman”}

Summary

cvmags complex vector magnitude squared
C Usage

void cvmags (float *a, int ia, float *c, int ic, int n);

Arguments

A Pointer to complex vector a

ia stride for vector a expressed in floats

C Pointer to results in real vector ¢

ic stride for vector ¢

N element count of vectors
Description

cvmags computes square of the magnitude of each element of complex vector a
and stores the results in real vector c. The square of the magnitude is

for i=0 to n-1
c[i] =real(a[i])**2 + imag(a[i])**2

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

43

cvmov

{xe”cvmov” }{xe “blkman”}

Summary
cvmov complex vector move
C Usage
void cvnov (float *a, int ia, float *c, int ic, int n);
Arguments
a pointer to complex vector a
ia stride for vector a expressed in reals
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in reals
n element count of vectors
Description

cvmov moves the elements of complex vector a to complex vector ¢

for i=0 to n-1
real (c[i])
imag(c[i])

real (a[i])
imag(ali])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

44

cvmul

{xe”cvmul” }{xe “blkman”}

Summary
cvmul complex vector multiply
C Usage
void cvmul (float *a, int ia, float *b, int ib,
float *c, int ic, int n, int direction);
Arguments
a pointer to complex vector a
ia stride for vector a expressed in floats
b pointer to complex vector b
ib stride for vector b expressed in floats
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors expressed in complex elements
direction processing mode
direction = 1 for normal multiply
direction = -1 for multiply with conjugate
Description

For direction = 1, cvmul does a normal complex multiply of each element of two
complex vectors a and b and stores the results in complex vector ¢ using the
algorithm

for i=0 to n-1

real (c[i]) =real(a[i]) * real(b[i]) - imag(a[i]) *
imag(b[i])
imag(c[i]) = real(a[i]) * imag(b[i]) + imag(ali]) *
real (b[i])

For direction = -1, cvmul multiplies vector b by the conjugate of vector a with the
algorithm

for i=0 to n-1
real (c[i]) =real(a[i]) * real(b[i]) + imag(a[i]) *

_ . _ _ . _ 1mag(bli])
imag(c[i]) = real(a[i]) * imag(b[i]) - img(a[i]) *
real (b[i])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

45

cvneg

{xe”cvneg” H{xe “blkman”}

Summary
cvneg complex vector negate
C Usage
void cvneg (float *a, int ia, float *c, int ic, int n);
Arguments
A pointer to complex vector a
la stride for vector a expressed in floats
C pointer to results in complex vector ¢
Ic stride for vector ¢ expressed in floats
N element count of vectors
Description

cvneg negates the elements of complex vector a and stores the results in
complex vector ¢

for i=0 to n-1
real (c[i])
imag(c[i])

-real (a[i])
-imag(ali])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

46

cvrcip

{xe”cvrcip” {xe “blkman”}

Summary
cvrcip complex vector reciprocal
C Usage
void cvrcip (float *a, int ia, float *c, int ic, int n);
Arguments
a pointer to complex vector a
ia stride for vector a expressed in floats
c pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
n element count of vectors
Description

cvrcip computes the reciprocal of the elements of complex vector a and stores
the results in complex vector ¢

for i=0 to n-1
real (c[i])
imag(cli])

real (a[i]) / (real(a[i])**2 + imag(a[i])**2)
-imag(a[i]) / (real(a[i])**2 + imag(a[i])**2)

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

47

cvsma

{xe”cvsma” }{xe “blkman”}

Summary

C Usage

Arguments

Description

cvsma complex vector scalar multiply and add

void cvsma (float *a, int ia, float *b, float *c, int ic,
float *d, int id, int n);

pointer to complex vector a

stride for vector a expressed in floats
pointer to complex scalar b

pointer to complex vector ¢

stride for vector ¢ expressed in floats
pointer to results in complex vector d
stride for vector d expressed in floats
element count of vectors

Z3 05 0mgyg >

cvsma multiplies elements of complex vector a by complex scalar b, adds the
corresponding element of complex vector ¢, and stores the result into complex
vector d using the algorithm

for i=0 to n-1
real (d[i]) =real(a[i])*real (b) - imag(a[i])*img(b) +

real (c[i])
imag(d[i]) = real(a[i])*imag(b) + imag(a[i])*real (b) +
imag(cli])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

48

cvsub

{xe”cvsub”}{xe “blkman”}

Summary
cvsub complex vector subtract
C Usage
void cvsub (float *a, int ia, float *b, int ib,
float *c, int ic, int n);
Arguments
A pointer to complex vector a
ia stride for vector a expressed in floats
B pointer to complex vector b
ib stride for vector b expressed in floats
C pointer to results in complex vector ¢
ic stride for vector ¢ expressed in floats
N element count of vectors
Description

cvsub subtracts complex vector b from complex vector a and stores the results
in complex vector ¢

for i=0 to n-1
real (c[i])
imag(cl[i])

real (a[i]) - real (b[i])
imag(ali]) - imag(b[i])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

49

Div

Div Divide images

C Usage

#include <fastlib.h>
void Div (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc);

Description

The Div function will divide each pixel of image a with the corresponding pixel
located in b, placing the output at image c. The following C code fragment
describes the function:

#i ncl ude <fastlib. h>
void Div (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[i*ic+] = a[i*ia+j]/b[i*ib+j];
}

50

dotpr

{xe”doptpr’}{xe “blkman”}

Summary

Dotpr dot product
C Usage

void dotpr (float *a, int ia, float *h, ib, float *c, int n);

Arguments

a pointer to real vector a

ia stride for vector a

b pointer to real vector b

ib stride for vector b

c pointer to result in real scalar c

n element count of a and b
Description

dotpr computes the dot product of two real vectors a and b and stores the result
in real scalar c using the algorithm

ainc =0
binc =0
for i=0 to n-1

¢ = sum(afainc] * b[binc])
ainc = ainc + ai
bi nc bi nc + bi

51

fastlibversion

{xe”fastlibversion” }{xe “blkman”}

Summary
fastlibversion FastSeries Library version
C Usage
extern char fastlibversion[];
Description

vlibversion is a character array containing a string specifying the FastSeries
Library version.

The following C example demonstrates the use of fastlibversion.
void prt_version void
{

extern char fastlibversion[];

printf (“9%\n”, fastlibversion);

52

Fill
Fill Fill float image

C Usage

#i ncl ude <fastlib. h>
void Fill (float *a, int ia, float *b, int nr, int nc);

Description

The Fill function loads each pixel of the float image a with the value located at b.
The following C code fragment describes the function:

void Fill (float *a, int ia, float *b, int nr, int nc)
r
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j ++)

a[ia*i+] = *b;

53

Fill8
Fill8 Fill 8-bit image

C Usage

#i ncl ude <fastlib. h>
void Fill8 (unsigned char *a, int ia, unsigned char *b, int nr,
int nc);

Description

The Fill8 function will load each pixel of the 8-bit image a with the value located
atb. The following C code fragment describes the function:

void Fill8 (unsigned char *a, int ia, unsigned char *b, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
afia*i+j] = *b;
}

54

Fill16

Fill16 Fill 16 bit image

C Usage
#i ncl ude <fastlib. h>
void Fill16 (unsigned short *a, int ia, unsigned short *b,
int nr, int nc);

Description

The Fill16 function will load each pixel of the 16-bit image a with the value
located at b. The following C code fragment describes the function:

#i ncl ude <fastlib. h>
void Fill16 (unsigned short *a, int ia, unsigned short *b, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
a[ia*i+j] = *b;
}

55

fixinta

{xe”fixinta” }{xe “blkman”}

Summary

fixinta fix pixels in format A (high/low)
C Usage

void fixinta (float *a, int ia, unsigned short *c, int n);

Arguments

a pointer to real vector a

ia stride for vector a

c pointer to results in pixel vector ¢

n element count of vector
Description

fixinta converts the elements of real vector a to 8-bit packed integers in a
high/low format. Each element is fixed and the low-order 8 bits of the integer are
taken as a positive magnitude. They are then stored as pairs into short integers
in unsigned short vector c in least-significant then most-significant order. The
algorithm can be written as follows0

for i=0 to n-1in steps of 2
c[i/2] = fix(a[i]).AND. $FF . OR 256*fix(a[i+1]).AND. $FF

56

fixintb

{xe”fixintb” }{xe “blkman”}

Summary

fixintb fix pixels in format B (low/high)
C Usage

void fixintb (float *a, int ia, unsigned short *c, int n);

Arguments

a real vector a

ia stride for vector a

c pointer to results in pixel vector ¢

n element count of vector
Description

fixintb converts the elements of real vector a to 8-bit packed integers in a
low/high format. Each element is fixed and the low-order 8 bits of the integer are
taken as a positive magnitude. They are then stored as pairs into short integers
in short vector ¢ in most-significant then least-significant order. The algorithm
can be written as follows

for i=0 to n-1in steps of 2
c[i/2] = 256*fix(a[i]).AND. $FF . OR fix(a[i+1]).AND. $FF

57

Fix8

Fix8 Convert float image to 8-bit integer

C Usage
#i ncl ude <fastlib. h>
void Fix8 (float *a, int ia, unsigned char *c, int ic, int nr, int
nc);

Description

The Fix8 function will convert a float image stored at a to an 8-bit image, which
will be placed at b. The following C code fragment describes the function:

void Fix8 (float *a, int ia, unsigned char *c, int ic, int nr, int

nc)

t

int i;

int j;

for (i =0; i <nr; i ++)
for (j =0; j <nc; j +4)
c[ic*i+j] = (unsigned char) a[ia*i+j];

}

58

Fix16

Fix16 Convert float image to 16 bit integer

C Usage
#i ncl ude <fastlib. h>
void Fix16 (float *a, int ia, unsigned short *c, int ic, int nr,
int nc);

Description

The Fix16 function will convert a float image stored at a to an 16-bit image, which
will be placed at b. The following C code fragment describes the function:

void Fix16 (float *a, int ia, unsigned short *c, int ic, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
c[ic*i+j] = (unsigned short) a[ia*i+j];

}

59

Float8

Float8 Convert 8-bit integer image to float

C Usage
#i ncl ude <fastlib. h>
void Float8 (unsigned char *a, int ia, float *c, int ic, int nr,
int nc);

Description

The Float8 function will convert an 8-bit image stored at a to a float image, which
will be placed at b. The following C code fragment describes the function:

void Float8 (unsigned char *a, int ia, float *c, int ic, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++)
for (j =05 j <nc; j +4)
c[ic*i+j] = a[ia*i+];

}

60

Floatl6

Float16 Convert 16 bit integer image to float
C Usage
#i ncl ude <fastlib. h>
void Float16 (unsigned short *a, int ia, float *c, int ic, int nr,
int nc);
Description

The Float16 function will convert a 16-bit image stored at a to a float image,
which will be placed at b. The following C code fragment describes the function:

void Float16 (unsigned short *a, int ia, float *c, int ic, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++)
for (j =05 j <nc; j +4)
c[ic*i+j] = a[ia*i+];

}

61

fltinta

{xe”fitinta” }{xe “blkman”}

Summary
fltinta float pixels in format A (high/low)
C Usage
void fltinta (unsigned short *a, float *c, int ic, int n);

Arguments

A pixel vector a

C results in real vector c

ic stride for vector c

n element count of vector
Description

fltinta converts the elements of pixel vector a from 8-bit packed integers in a
high/low format to real values and stores them into vector c. Each 8-bit element
in vector a is taken as a positive magnitude and floated. They are extracted in
least-significant then most-significant order. The algorithm can be written as
follows

for i=0 to n-1 in steps of 2

c[i] = float(a[i/2]).AND. $FF)
c[i+1] = float(a[i/2]).AND. $FFO0)/ 256

62

fltintb

{xe”fttintb” }{xe “blkman”}

Summary

fltintb float pixels in format B (low/high)
C Usage

void fltintb (unsigned short *a, float *c, int ic, int n);

Arguments

a pixel vector a

c results in real vector c

ic stride for vector ¢

n element count of vector
Description

fltintb converts the elements of pixel vector a from 8-bit packed integers in a
low/high format to real values and stores them into vector c. Each 8-bit element
in vector a is taken as a positive magnitude and floated. They are extracted in
most-significant then least-significant order. The algorithm can be written as
follows

for i=0 to n-1 in steps of 2
c[i] = float(a[i/2]).AND. $FF00)/ 256
c[i+1] = float(a[i/2]).AND. $FF)

63

hamm

{xe”hamm” }{xe “blkman”}

Summary

hamm hamming window multiply
C Usage

void hamm (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

hamm multiplies real vector a by a Hamming window and stores the resulting real
vector into ¢c. The Hamming algorithm is

for i-0ton-1
c[i] = a[i] * (0.54 - 0.46*cos(i*2*pi/n))

blkman and hann are two other functions for conditioning signals prior to
performing an FFT.

64

hann

{xe”hann” }{xe “blkman”}

Summary

C Usage

Arguments

Description

hann hanning window multiply

void hann (float *a, int ia, float *c, int ic, int n, int flag);

a real vector a

ia stride for vector a

c results in real vector c

ic stride for vector c

n element count of vectors
flag normalization mode

flag = 0 for unnormalized hanning window
flag = 1 for normalized hanning window

For flag = 0, hann multiplies real vector a by an unnormalized Hanning window
using the algorithm

for i=0 to n-1
c[i] = 0.5 * a[i] * (1.0 - cos(i*2*pi/n))

For flag = 1, hann multiplies real vector a by a normalized Hanning window by the
algorithm

for i=0 to n-1
c[i] =sqrt(2.0/3.0) * a[i] * (1.0 -
cos(i*2*pi/n))

blkman and hamm are two other functions used for conditioning signals prior to
performing an FFT.

65

hist

{xe”hiht” }{xe “blkman”}

Summary
hist histogram
C Usage
void hist (float *a, int ia, float *c, int n, int nc,
float *amax, float *amin);
Arguments
a real vector a
ia stride for vector a
c histogram in real vector ¢
n element count of vector a
nc number of bins in ¢
amax maximum histogram value
amin minimum histogram value
Description

hist constructs a histogram on the elements of real vector a and adds the results
to the histogram in vector c. The number of bins in the histogram and the
maximum and minimum values of the range of interest is specified by nc, amax,
and amin, respectively. The width of each bin is (amax - amin)/ nc except that
values below amin or above amax are counted in the first and last bin,
respectively.

Note that upon entry to hist, vector ¢ contains an initial histogram. Upon return,
vector ¢ has been updated with the number of elements of vector a that fell in
each bin according to the algorithm

for i=0 to n-1

if a[i] <amn, | =0,

else if a[i] >= amax, | = nc-1,

else, | =int(nc*(a[i]-amn)/(amax-amn)),
then c[j] =c[j] + 1.0

66

HistoEqual8

HistoEqual8 Histogram Equalization of 8-bit image

C Usage

#i ncl ude <fastlib. h>
voi d Hi stoEqual 8 (unsigned char *a, int ia, u_long *b, unsigned
char *c, int ic,
int nr, int nc);

Description

The HistoEqual8 function will perform a histogram equalization on the 8-bit
image located at a. The function must be passed the histogram for image a. The
user must place the histogram at b. The output image is placed at location c.
The following C code fragment describes the function:

#defi ne MAX8BI T 255

voi d Hi stoEqual 8 (unsigned char *a, int ia, u_long *b, unsigned
char *c, int ic, int nr, int nc)

L

int i;

int j;

u_l ong pixel _count, total;

unsi gned char tran_fn[MAX8BIT + 1];

/* find the total pixel count */
pi xel _count = nr * nc;

/* create inmage transform| ut*/
for (i =0, total = 0; i <= MAX8BIT; i++)

{
total += b[i]; /* calc. cunulative histogram?*/
tran_fn[i] = (unsigned char) (MAX8BIT *
(float)((float)total/(float)pixel_count) + 0.5);
}
for (i =0; i <nr; i ++)

for (j =0; j <nc; j +4)
cl[ic*i+j] = tran_fn[a[ia*i+]];

67

HistoEquall0

HistoEquall0 Histogram Equalization of 10 bit image

C Usage
#i ncl ude <fastlib. h>
voi d Hi st oEqual 10 (unsigned short *a, int ia, u_long *b,
unsi gned short *c, int ic, int nr, int nc);
Description

The HistoEqual10 function will perform a histogram equalization on the 10-bit
image located at a. The function must be passed the histogram for image a. The
user must place the histogram at b. The output image is placed at location c.
The following C code fragment describes the function:

#define MAX10BI T 1023

voi d Hi stoEqual 10 (unsigned short *a, int ia, u_long *b, unsigned
short *c, int ic, int nr, int nc)

Lo

int i;

int j;

u_l ong pixel _count, total;

unsi gned short tran_fn[MAX10BIT + 1];

/* find the total pixel count */
pi xel _count = nr * nc;

/* create image transform /| ut*/
for (i =0, total = 0; i <= MAX10BIT,; i++)

{
total += b[i]; [/* calc. cunulative histogram?*/
tran_fn[i] = (unsigned char)(MAX10BI T *
(float)((float)total/(float)pixel _count) + 0.5);
}
for (i =0; i <nr; i +4)

for (j =0;] <nc; j +4)
cl[ic*i+j] = tran_fn[a[ia*i+]];

68

HistoEquall2

HistoEquall2 Histogram Equalization of 12 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi stoEqual 12 (unsigned short *a, int ia, u_long *b,
unsi gned short *c, int ic, int nr, int nc);

Description

The HistoEqual12 function will perform a histogram equalization on the 12-bit
image located at a. The function must be passed the histogram for image a. The
user must place the histogram at b. The output image is placed at location c.
The following C code fragment describes the function:

#define MAX12BI T 4095

voi d Hi stoEqual 12 (unsigned short *a, int ia, u_long *b, unsigned
short *c¢, int ic, int nr, int nc)

L

int i;

int j;

u_l ong pixel _count, total;

unsi gned short tran_fn[MAX12BI T + 1];

/* find the total pixel count */
pi xel _count = nr * nc;

/* create inmage transform| ut*/
for (i =0, total = 0; i <= MAX12BIT; i++)

{
total += b[i]; /* calc. cunulative histogram*/
tran_fn[i] = (unsigned char)(MAX12BI T *
(float)((float)total/(float)pixel_count) + 0.5);
}
for (i =0; i <nr; i ++)

for (j =0; j <nc; j ++)
c[ic*i+j] = tran_fn[a[ia*i+]];

69

HistoEquall4

HistoEquall4 Histogram Equalization of 14 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi st oEqual 14 (unsigned short *a, int ia, u_long *b,
unsi gned short *c, int ic, int nr, int nc);

Description

The HistoEqual14 function will perform a histogram equalization on the 14-bit
image located at a. The function must be passed the histogram for image a. The
user must place the histogram at b. The output image is placed at location c.
The following C code fragment describes the function:

#define MAX14BI T 16383

voi d Hi st oEqual 14 (unsigned short *a, int ia, u_long *b, unsigned
short *c¢, int ic, int nr, int nc)

L

int i;

int j;

u_l ong pixel _count, total;

unsi gned short tran_fn[MAX14BI T + 1];

/* find the total pixel count */
pi xel _count = nr * nc;

/* create inmage transform| ut*/
for (i =0, total = 0; i <= MAX14BIT; i++)

{
total += b[i]; /* calc. cunulative histogram*/
tran_fn[i] = (unsigned char)(MAX14BI T *
(float)((float)total/(float)pixel_count) + 0.5);
}
for (i =0; i <nr; i ++)
for (j =0; j <nc; j ++)

cl[ic*i+] =tran_fn[a[ia*i+]];

70

HistoEquall6

HistoEquall6 Histogram Equalization of 16 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi st oEqual 16 (unsigned short *a, int ia, u_long *b,
unsi gned short *c, int ic, int nr, int nc)

Description

The HistoEqual16 function will perform a histogram equalization on the 16-bit
image located at a. The function must be passed the histogram for image a. The
user must place the histogram at b. The output image is placed at location c.
The following C code fragment describes the function:

#i ncl ude <fastlib. h>
#defi ne MAX16BI T 65535

voi d Hi stoEqual 16 (unsigned short *a, int ia, u_long *b, unsigned
short *c¢, int ic, int nr, int nc)

L

int i;

int j;

u_l ong pixel _count, total;

unsi gned short tran_fn[MAX16BI T + 1];

/* find the total pixel count */
pi xel _count = nr * nc;

/* create inmage transform| ut*/
for (i =0, total = 0; i <= MAX16BIT,; i++)

total += b[i]; /* calc. cunulative histogram*/
tran_fn[i] = (unsigned char) (MAX16BI T *
(float)((float)total/(float)pixel_count) + 0.5);

}

for (i =0; i <nr; i ++)
for (j =0; j <nc; j +4)
cl[ic*i+j] = tran_fn[a[ia*i+]];

71

Histogram8

Histogram8 Calculate histogram for 8-bit image

C Usage

#i nclude <fastlib. h>
void Hi stogranmB8 (unsigned char *a, int ia, u_long *c, int

nc);

nr, int

Description

The Histogram8 function will calculate the histogram for the 8-bit image located
at a. The histogram will be placed at c. The following C code fragment describes

the function:

#i ncl ude <fastlib. h>

voi d Hi stogranB8 (unsigned char *a, int ia, u_long *c, int nr, int
nc)
t
int i;
int j;
for (i =0; i < 256; i ++)
c[i] = 0;
for (i =0; i <nr; i ++)
for (j =0; j <nc; j +4)
cla[ia*i+j]] ++
}

72

Histogram10

Histogram10 Calculate histogram for 10 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi stogramlO (unsigned short *a, int ia, u_long *c,

int nc);

int nr,

Description

The Histogram10 function will calculate the histogram for the 10-bit image
located at a. The histogram will be placed at c. The following C code fragment

describes the function:

voi d Hi stogramlO (unsigned short *a, int ia, u_long *c, int nr,
int nc)
L
int i;
int j;
for (i =0; i < 1024; i ++)
c[i] = 0;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
cla[ia*i+]] ++;
}

73

Histograml12

Histogram12 Calculate histogram for 12 bit image

C Usage

#i nclude <fastlib. h>
void Hi stograml2 (unsigned short *a, int ia, u_long *c,

int nc);

int nr,

Description

The Histogram12 function will calculate the histogram for the 12-bit image
located at a. The histogram will be placed at c. The following C code fragment

describes the function:

#i ncl ude <fastlib. h>

voi d Hi stograml2 (unsigned short *a, int ia, u_long *c, int nr,
int nc)
L
int i;
int j;
for (i = 0; i < 4096; i ++)
c[i] = 0;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j ++)
cl[a[ia*i+]] ++;
}

74

Histogram14

Histogram14 Calculate histogram for 14 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi stograml4 (unsigned short *a, int ia, u_long *c,

int nc);

int nr,

Description

The Histogram14 function will calculate the histogram for the 14-bit image
located at a. The histogram will be placed at c. The following C code fragment

describes the function:

voi d Hi stograml4 (unsigned short *a, int ia, u_long *c, int nr,
int nc)
L
int i;
int j;
for (i = 0; i < 16384; i ++)
c[i] = 0;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
cla[ia*i+]] ++;
}

75

Histograml16

Histogram16 Calculate histogram for 16 bit image

C Usage

#i nclude <fastlib. h>
voi d Hi stogramlé6 (unsigned short *a, int ia, u_long *c, int nr,

int nc);

Description

The Histogram16 function will calculate the histogram for the 16-bit image
located at a. The histogram will be placed at c. Histogram16 may require the
stack size to be increased. RT860 -s option can be used to set the stack size.
The following C code fragment describes the function:

voi d Hi stograml6 (unsigned short *a, int ia, u_long *c, int nr,

int nc)
L
int i;
int j;
for (i = 0; i < 65536; i ++)
c[i] = 0;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j ++)
cl[a[ia*i+]] ++;
}

76

Histogram

Histogram Calculate histogram of float image

C Usage

#i ncl ude <fastlib. h>
void Hi stogram (float *a, int ia, float *low, float *high, int
nbin,u_long *c, int nr, int nc);

Description

The Histogram function will calculate the histogram for the float image located at
a. The histogram will be placed at c. Input parameters, high and low, provide
the function with the range of the input image data. Input parameter, nbin,
specifies the number of bins of the histogram. The following C code fragment
describes the function:

void Hi stogram (float *a, int ia, float *low, float *high, int
nbin, u_long *c, int nr, int nc)

L
int i;
int j;
int idx;
for (i =0;i <nbin;, i ++)
c[i] = 0;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j ++)
idx = (a[ia*i+] - *low) / (*high - *low) *
((float)nbin);
if (idx < 0)
idx = 0;
if (idx >= nbin)
i dx = nbin;
c[idx] ++;
}

77

Ifree

Ifree Free dynamically allocated image

C Usage

#i nclude <fastlib. h>
void Ifree (void *p);

Description

The Ifree function frees storage that was dynamically allocated by Imalloc,
Imalloc8 or Imalloc16. The argument p is the address of an image returned
from one of the above functions.

78

Imalloc
Imalloc Allocate float image

C Usage

#i ncl ude <fastlib. h>
float *Imalloc (int nr, int nc);

Description

The Imalloc function dynamically allocates a float image of size nr by nc,
returning a float pointer. The value NULL is returned if the allocation fails. The

memory space may be freed by calling Ifree with the address returned from
Imalloc.

79

Imalloc8
Imalloc8 Allocate 8-bit image

C Usage

#i nclude <fastlib. h>
unsi gned char *Imalloc8 (int nr, int nc);

Description

The Imalloc8 function dynamically allocates an 8-bit image of size nr by nc,
returning an unsigned char pointer. The value NULL is returned if the allocation
fails. The memory space may be freed by calling Ifree with the address returned
from Imalloc8.

80

Imalloc16
Imalloc16 Allocate 16-bit image

C Usage

#i nclude <fastlib. h>
unsi gned short *Imallocl6 (int nr, int nc);

Description

The Imalloc16 function dynamically allocates a 16-bit image of size nr by nc,
returning an unsigned short pointer. The value NULL is returned if the allocation
fails. The memory space may be freed by calling Ifree with the address returned
from Imalloc8.

81

Interlace

Interlace Convert non-interlaced to interlaced image
C Usage
#i ncl ude <fastlib. h>
void Interlace (unsigned char *a, int ia, unsigned char *odd, int
i odd, unsigned char *even,
int ieven, int nr, int nc);
Description

The Interlace function takes the non-interlaced image stored in a, and breaks it
up into odd and even field, storing the result in odd and even. The argument nr
specifies the number of rows in a, which is twice the number of rows in odd and
even. The following C code fragment describes the function:

void Interlace (unsigned char *a, int ia, unsigned char *odd, int
i odd, unsigned char *even, int ieven, int nr, int nc)

{
Mov8 (a, 2*ia, odd, iodd, nr, nc);
Mov8 (atia, 2*ia, even, ieven, nr, nc);

82

Kirsch

C Usage

#i ncl ude <fastlib. h>

void Kirsch (float *a,

ncol) ;

Description

Kirsch

Kirsch operator on float image

int ia, float *b, int ib,

int nrow,

int

The Kirsch function applies the kirsch gradient operator to the input image
located at a. The gradient image will be placed at ¢c. The following C code
fragment describes the function:

fl oat kirsch_h[8][9]
0.33, -0.20, -0.20,
0.33, 0.0, -0.20,
0.33, -0.20, -0.20,
-0.20, -0.20, -0.20,
0.33, 0.0, -0.20,
0.33, 0.33, -0.20,
-0.20, -0.20, -0.20,
0.20, 0.0, -0.20,
0.33, 0.33, 0.33,
-0.20, -0.20, -0.20,
0.20, 0.0, 0.33,
0.20, 0.33, 0.33,
-0.20, -0.20, 0.33,
0.20, 0.0, 0.33,
0.20, -0.20, 0.33,
0.20, 0.33, 0.33,
0.20, 0.0, 0.33,
0.20, -0.20, -0.20,
0.33, 0.33, 0.33,
0.20, 0.0, -0.20,
0.20, -0.20, -0.20,
0.33, 0.33, -0.20,
0.33, 0.0, -0.20,
0.20, -0.20, -0.20

s

void Kirsch(float *a, int ia, float *b, int ib,

ncol)

{

int row, col, i, j, k, iml, ipl, krn, lcv;

int rowrlxia, rowplxia, rowxia;

float value, fabs_value, max_val;

for (row=1; row < (nrow - 1); rowt+)

83

int nrow,

int

r owmrilx
rowplx
rowxi a
for (c

~

ia
ia
ol

{

(row - 1)*ia;
(row + 1)*ia;
oWi a;
1;

= unu

i =rowia + col;
rowrlxia + col;
rowplxia + col;

im =
ipl =
nmax_va

-999999. 0,

for (k =0; k < 8; k++)

{
value = kirsch_h[k][O]*a[iml-1];

val ue
val ue
val ue
val ue
val ue
val ue
val ue
val ue

4=
+=
+=
+=
+=
+=
+=
+=

kirsch_h[k][1]*a[inml];
kirsch_h[Kk][2]*a[iml+1];
kirsch_h[k][3]*a[i-1];
kirsch_h[k][4]*a[i];
kirsch_h[k][5]*a[i +1];
kirsch_h[Kk][6]*a[ipl-1];
kirsch_h[Kk][7]*a[ipl];
kirsch_h[Kk][8]*a[ipl+l];

fabs_val ue = fabs(val ue);
if (fabs_value > nax_val)

b[j] =

{
max_val
}
}
j = (ib*row) + col;
max_val ;
}
}

84

col < (ncol - 1); col ++)

= fabs_val ue;

Lut8

Lut8 Perform lookup on 8-bit image to 8-bit image

C Usage

#i ncl ude <fastlib. h>
void Lut8 (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr, int nc)

Description

The Lut8 function modifies the 8-bit input image (a) based on the lookup table,
which is passed to the function at b. The 8-bit output image will be placed at c.
Table b contains an intermediate version of the desired lookup table, which is
generated by calling RegLut8. RegLut8 improves performance and must be
called once for each lookup table. The following C code fragment describes the
function:

void Lut8 (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
cl[ic*i+j] = b[a[ia*i+]];
}

The following C code fragment demonstrates the use of RegLut8 with Lut8.

unsi gned char a[512*512], c¢[512*512]; [/* declare inmage buffers */

unsi gned char tabl e_a[256]; /* declare | ookup table data */
unsi gned char tabl e_b[256];

int lut_a; /| declare internediate pointers */

int *lut_b;

initialize (table_a); /* initialize | ookup tables */

initialize (table_b);
lut_a = RegLut8 (table_a); /* allocate internediate versions */
lut _b = RegLut8 (table_b);

if (lut_a == NULL || lut_b == NULL) /* check for error */
{

printf (“ERROR ReglLut8 failed\n”);

exit (1);

}

[*--- perform | ookup using table A ---*/

Lut8 (a, 512, lut_a, c, 512, 512, 512);

[*--- Perform | ookup using table B ---*/

Lut8 (a, 512, lut_b, c, 512, 512, 512);

85

C Usage

Lut8f

Lut8f Perform lookup on 8-bit image to float image

#i ncl ude <fastlib. h>

void Lut8f (unsigned char *a, int ia, float *b, float *c, int ic,
int nr,

int nc);

Description

The Lut8f function modifies the 8-bit input image (a) based on the lookup table,
which is passed to the function at b. The float output image will be placed at c.
The following C code fragment describes the function:

voi d Lut8f (unsigned char *a, int ia, float *b, float *c, int ic,
int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[ic*i+j] = b[a[ia*i+j]];
}

86

C Usage

Lut8s

Lut8s Perform lookup on 8-bit integer to 16 bit image

#i ncl ude <fastlib. h>

void Lut8s (unsigned char *a, int ia, int *b, unsigned short *c,
int ic, int nr,

int nc);

Description

The Lut8s function modifies the 8-bit input image (a) based on the 16-bit lookup
table, which is passed to the function at b. The 16-bit output image will be placed
at c. Table b contains an intermediate version of the desired lookup table, which
is generated by calling RegLut8s. ReglLut8s improves performance and must
be called once for each new lookup table. The following C code fragment
describes the function:

void Lut8s (unsigned char *a, int ia, int *b, unsigned short *c,
int ic, int nr, int nc)

t

int iI;

int j;

for (i =0; i <nr; i ++)
for (j =0; j <nc; j ++)
clic*i+j] = bla[ia*i+]];

}

}

Refer to Lut8 for sample code that demonstrates the use of RegLut8s with
Lut8s.

87

Lutf

Lutf Perform lookup on float image to float image
C Usage
#i ncl ude <fastlib. h>
void Lutf (float *a, int ia, float *low, float *high, int nbin,
float *b,
float *c, int ic, int nr, int nc);
Description

The Lutf function modifies the float input image (a) based on the lookup table
which is passed to the function at b. The float output image will be placed at c.
Input parameters, high and low, provide the function with the range of the input
image data. Input parameter, nbin, specifies the number of bins of the lookup
table. The following C code fragment describes the function:

void Lutf (float *a, int ia, float *low, float *high, int nbin,
float *b, float *c, int ic, int nr, int nc)

t
int i;
int j;
int idx;
for (i =0; i <nr; i ++)
for (j =05 j <nc; j ++4)
idx = (a[ia*i+] - *low) / (*high - *low *
((float)nbin);
if (idx < 0)
idx = 0;
if (idx >= nbin)
idx = nbin - 1;
c[ic*i+j] = b[idx];
}
}

88

lveq

{xe”lveq” {xe “blkman”}

Summary
Iveq logical vector equal
C Usage
void lveq (float *a, int ia, float * b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

Iveq compares the corresponding elements of real vectors a and b and sets the
corresponding elements of vector c to 1.0 if the element of a equals the element
of b, to 0 if not. The processing algorithm is

for i=0 to n-1

if a[i] == b[i], c[i] = 1.0,
else c[i] =0.0

89

lvge

{xe”lvge” {xe “blkman”}

Summary
Ivge logical vector greater than or equal
C Usage
void lvge (float *a, int ia, float * b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

Ivge compares the corresponding elements of real vectors a and b and if the
element of a is greater than or equal to the element of b, the corresponding
element of real vector c is set to 1.0. Otherwise, the element of c is set to 0.0

for i=0 to n-1

if a[i] >= Db[i], c[i] = 1.0,
else c[i] =0.0

90

lvgt

{xe” lvgt” }{xe “blkman”}

Summary
Ivgt logical vector greater than
C Usage
void lvgt (float *a, int ia, float * b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

Ivge compares the corresponding elements of real vectors a and b, and if the
element of a is greater than the element of b, the corresponding element of real
vector c is set to 1.0. Otherwise, the element of c is set to 0.0

for i=0 to n-1

if a[i] > b[
else c[i] =

91

lvhe

{xe”lvne” }{xe “blkman”}

Summary

C Usage

Arguments

Description

Ilvne logical vector not equal

void Ivne (float *a, int ia, float * b, int ib, float *c, int ic,
int n);

a real vector a

ia stride for vector a

b real vector b

ib stride for vector b

c results in real vector c

ic stride for vector ¢

n element count of vectors

Ivhe compares the corresponding elements of real vectors a and b, and if the
element of a is not equal to the element of b, the corresponding element of real
vector c is set to 1.0. Otherwise, the element of c is set to 0.0

for i=0 to n-1

if a[i] !'= b[i], c[i] = 1.0,
else c[i] = 0.0

92

lvnot

{xe”lvnot” }{xe “blkman”}

Summary

Ivnot logical vector not
C Usage

void lvnot (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

Ivnot computes the logical complement of real vector a and stores the results in
real vector ¢ according to the algorithm

for i=0 to n-1
if a[i]

= 0.0, c[i] =1.0,
else c[i] =0

.0

93

Magnitude

Magnitude Compute magnitude of images

C Usage
#include <fastlib.h>
voi d Magnitude (float *a, int ia, float *b, int _i b, float *c, int
int nr, int nc); e

Description

Magnitude computes the square root of the sum of the squares of two images.
The following C code fragment describes the function:

voi d Magnitude (float *a, int ia, float *b, int ib, float *c, int
ic, int nr, int nc)

t

int i;

int j;

for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
c[i*ic+] = sqgrt (a[i*ia+j]*a[i*ia+j] *
b[i*ib+j]*b[i*ib+]);
}

94

matinv

{xe”matinv” }{xe “blkman”}

Summary

matinv matrix inverse
C Usage

void matinv (float *a, float * ¢, int nrc, int *ierr);

Arguments

a pointer to real matrix a

c pointer to resulting inverse matrix ¢

nrc number of rows/columns

ierr pointer to ending condition
Description

matinv computes the inverse of real matrix a using the LU decomposition
method with back substitution and leaves the inverse in real matrix c. The ending
condition is indicated in integer ierr: a value of zero is returned if the inverse was
computed; a value of non zero is returned if the matrix was singular. matinv
uses temporary working space to hold three rows of data.

95

C Usage

Max

Max Maximum of images

#i ncl ude <fastlib. h>

void Max (float *a, int ia, float *b, int ib, float *c, int ic,
int nr,

int nc);

Description

The Max function compares the two input images (a and b) to find the maximum
pixel value at each pixel location. The maximum pixel values create the output
image at c. The following C fragment describes the function:

#define max(x,y) ((x) > (y)) 2 (x) : (y)
void Max (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[i*ic+t] = max (a[i*ia+j],b[i*ib+]);
}

96

maxmgv

{xe"maxmgv” }{xe “blkman”}

Summary
maxmgv maximum magnitude of a vector
C Usage
void maxngv (float *a, int ia, float *c, int *lc, int n);
Arguments
A real vector a
ia stride for vector a
C return real scalar ¢ containing maximum magnitude found
Ic return integer Ic containing index of first element with
maximum magnitude
N element count of vectors
Description

maxmgv finds the first element in real vector a having the maximum magnitude
(absolute value), stores its magnitude in ¢, and indicates in integer Ic the number
of tests that were performed to reach the first occurrence of the maximum
magnitude.

97

maxv

{xe”maxv” }{xe “blkman”}

Summary
maxv maximum element of a vector
C Usage
void maxv (float *a, int ia, float *c, int *index, int n);
Arguments
a real vector a
ia stride for vector a
c return real scalar ¢ containing maximum value found
index return integer Ic containing index of first element with
maximum value
n element count of vectors
Description

maxv finds the element in real vector a having the maximum value, stores that
value in real scalar ¢, and indicates in integer index the number of tests that were
performed to reach the first occurrence of the maximum value.

98

meamgv

{xe"meamgv” }{xe “blkman”}

Summary
meamgv mean of vector element magnitudes
C Usage
void meangv (float *a, int ia, float *c, int n);
Arguments
a real vector a
ia stride for vector a
c real scalar c containing computed mean of element
magnitudes
n element count of vectors
Description

meamgv computes the mean magnitude of all elements in real vector a and
stores the result in real scalar c. The algorithm for the mean is:

for i=0 to n-1
c = sun(abs(a[i])) / n

99

meanv

{xe”meanv” }{xe “blkman”}

Summary

meanv mean value of vector elements
C Usage

void nmeanv (float *a, int ia, float *c, int n);

Arguments

a real vector a

ia stride for vector a

c real scalar c containing computed mean of vector

elements

n element count of vector a

Description

meanv computes the mean value of all elements in real vector a and stores the
result in real scalar c. The algorithm for the mean is

for i=0 to n-1
c =sun(a(i)) / N

100

measqv

{xe"measqv” }{xe “blkman”}

Summary

measqVv mean of vector element squares
C Usage

voi d neasqv (float *a, int ia, float *c, int n);

Arguments

a real vector a

ia stride for vector a

c real scalar c containing computed mean of element

squares

n element count of vectors

Description

measqv computes the mean value of the squares of the elements of real vector a
and stores the result into real scalar c. The algorithm for the computation is

for i=0 to n-1
c = sun(af[i] * a[i]) / n

101

Median3x3

Median3x3 3x3 median filter on float image
C Usage
#i nclude <fastlib. h>
voi d Medi an3x3 (float *a, int ia, float *c, int ic, int nr, int
nc);
Description

The Median3x3 function applies a 3 by 3 median filter to the float input image at
a. The output image © is created by replacing a pixel in a with the median value
of a nine pixel window centered at the particular pixel. The filtering begins where
there is complete coverage of the 3x3 kernel. All border pixels are not filtered
and passed directly to the output image.

102

Median5x5

Median5x5 5x5 median filter on float image
C Usage
#i nclude <fastlib. h>
voi d Medi an5x5 (float *a, int ia, float *c, int ic, int nr, int
nc);
Description

The Median5x5 function applies a 5 by 5 median filter to the float input image at
a. The output image © is created by replacing a pixel in a with the median value
of a 25 pixel window centered at the particular pixel. The filtering begins where
there is complete coverage of the 5x5 kernel. All border pixels are not filtered
and passed directly to the output image.

103

Median7x7

Median7x7 7x7 median filter on float image
C Usage
#i nclude <fastlib. h>
voi d Medi an7x7 (float *a, int ia, float *c, int ic, int nr, int
nc);
Description

The Median7x7 function applies a 7 by 7 median filter to the float input image at
a. The output image © is created by replacing a pixel in a with the median value
of a 49 pixel window centered at the particular pixel. The filtering begins where
there is complete coverage of the 7x7 kernel. All border pixels are not filtered
and passed directly to the output image.

104

C Usage

Min

Min Minimum of images

#i ncl ude <fastlib. h>

void Mn (float *a, int ia, float *b, int ib, float *c, int ic,
int nr,

int nc);

Description

The Min function compares the two input images (a and b) to find the minimum
pixel value at each pixel location. The minimum pixel values create the output
image at c. The following C fragment describes the function:

#define mn(x,y) ((x) <(y)) 2 (x) + (y)
void Mn (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[i*ic+tj] = mn (a[i*ia+j],b[i*ib+]);
}

105

minmgyv

{xe"minmgv” }{xe “blkman”}

Summary
minmgv minimum magnitude element of a vector
C Usage
void mnngv (float *a, int ia, float *c, int *lc, int n);
Arguments
A real vector a
ia stride for vector a
C real scalar ¢ containing minimum magnitude found
Ic integer Ic containing index of first element with minimum
magnitude
N element count of vectors
Description

minmgyv finds the first element having the minimum magnitude (absolute value)
in real vector a, stores its magnitude in real scalar ¢, and indicates in integer Ic
the number of tests that were performed to reach the first occurrence of the
minimum magnitude.

106

{xe"minv”}{xe “blkman”}

Summary

C Usage

Arguments

Description

minv

void mnv (float

minv

minimum element of a vector

*a, int ia, float *c, int *lc, int n);

real vector a

stride for vector a

real scalar c containing minimum value found

integer Ic containing index of first element with minimum
value

element count of vectors

minv finds the element in real vector a having the minimum value, stores that
value in real scalar ¢, and indicates in integer Ic the number of tests that were
performed to reach the first occurrence of the minimum value.

107

mmul

{xe"mmul” }{xe “blkman”}

Summary
mmul real matrix multiply
C Usage
void mmul (float *a, int ia, float * b, int ib, flaot *c, int ic,
int nrc, int ncc, int nca);
Arguments
a real matrix a
ia stride for matrix a
b real matrix b
ib stride for matrix b
c results in real matrix ¢
ic stride for matrix ¢
nrc integer number of rows in matrices a and ¢
ncc integer number of columns in b and ¢
nca integer number of columns in a and rows in b
Description

mmul multiplies the elements of two real matrices a and b and stores the results
in matrix c. The strides concept is extended to matrices in this function to specify
the address increment between consecutive elements to be processed in the
matrices. This is reflected in the manner in which the indices are computed in the
algorithm.

for i=0 to nrc-1
for j=0 to ncc-1
c[i*ncc+j*ic] = 0;
for k=0 to nca-1
c[i*ncc+j *ic] += a[i*ncatk*ia] * b[i*ncc+i b*j]

108

Mov

Mov Move float image

C Usage

#i ncl ude <fastlib. h>

void Mov (float *a, int ia, float *c, int ic, int nr, int nc);
Description

The Mov function moves the float image at a to c. The following C fragment
describes the function:

#i ncl ude <fastlib. h>
void Mov (float *a, int ia, float *c, int ic, int nr, int nc)

t
int i;
int j;
for (i =0; i < nr; i++)
for (j =0; j <nc; j++)
c[ic*i+j] = a[ia*i+];
}

109

Mov8

Mov8 Move 8-bit image
C Usage
#i ncl ude <fastlib. h>
void Mov8 (unsigned char *a, int ia, unsigned char *c, int ic, int
nr, int nc);
Description

The Mov8 function moves the 8-bit image at a to c. The following C fragment
describes the function:

voi d Mov8 (unsigned char *a, int ia, unsigned char *c, int ic, int
nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[ic*i+j] = a[ia*i+];
}

110

C Usage

Mov16

Mov16 Move 16 bit image

#i ncl ude <fastlib. h>

void Mov16 (unsigned short *a, int ia, unsigned short *c, int ic,
int nr,

int nc);

Description

The Mov16 function moves the 16-bit image at a to c. The following C fragment
describes the function:

void Mov16 (unsigned short *a, int ia, unsigned short *c, int ic,
int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =05 j <nc; j +4)
c[ic*i+j] = a[ia*i+];
}

111

mtrans

{xe”mtrans” }{xe “mtrans”}

Summary
mtrans real matrix transpose
C Usage
void ntrans (float *a, int nca, float *c, int ncc, int nraa, int
ncaa) ;
Arguments
a real input matrix a
nca integer input number of columns in full matrix a
c results in real output matrix ¢
ncc integer input number of columns in full matrix ¢
nraa integer input number of rows in sub matrix a
ncaa integer input number of columns in sub matrix a
Description

mtrans transposes the elements of a real matrix A and stores the results in C. A

and C must not overlay each other.

112

C Usage

MulScalar

MulScalar Multiply image by scalar

#i ncl ude <fastlib. h>

void Mul Scal ar (float *a, int ia, float *b, float *c, int ic, int
nr,

int nc);

Description

The MulScalar function multiplies each element of image a with the scalar given
by argument b, placing the output at image c. The following C code fragment
describes the function:

void Mul Scalar (float *a, int ia, float *b, float *c, int ic, int
nr, int nc)

L
int i;
int j;
for (i =0; i < nr; i++)
for (j =0; j <nc; j+4)
cl[i*ic+j] = a[i*ia+j]* *b;
}

113

Not8

Not8 Compute complement of 8-bit image

C Usage
#i ncl ude <fastlib. h>
void Not8 (unsigned char *a, int ia, unsigned char *c, int ic, int
nr, int nc);

Description

The Not8 function performs a logical complement of each element of image a,
placing the output at image c. The following C code fragment describes the
function:

void Not8 (unsigned char *a, int ia, unsigned char *c, int ic, int
nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[ic*i+j] = ~a[ia*i+];
}

114

Not1l6

Not16 Compute complement of 16 bit image
C Usage
#i ncl ude <fastlib. h>
void Not 16 (unsigned short *a, int ia, unsigned short *c, int ic,
int nr,
int nc);
Description

The Not16 function performs a logical complement of each element of image a,
placing the output at image c. The following C code fragment describes the
function:

voi d Not 16 (unsigned short *a, int ia, unsigned short *c, int ic,
int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[ic*i+j] = ~a[ia*i+];
}

115

or8

Or8 Logical OR 8-bit images

C Usage

#i ncl ude <fastlib. h>
void Or8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c, int ic, int nr, int nc);

Description

The Or8 function performs a logical “or” of each element of image a with the
corresponding element in image b, placing the output at image c. The following
C code fragment describes the function:

void Or8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c¢, int ic, int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[ic*i+j] = a[ia*i+j] | b[ib*i+];
}

116

Orl6

Orl6 Logical OR 16 bitimage

C Usage

#i ncl ude <fastlib. h>
void Or16 (unsigned short *a, int ia, unsigned short *b, int ib,
unsi gned short *c, int ic, int nr, int nc);

Description

The Or16 function performs a logical “or” of each element of image a with the

corresponding element in image b, placing the output at image c. The following
C code fragment describes the function:

void Or16 (unsigned short *a, int ia, unsigned short *b, int ib,
unsi gned short *c, int ic, int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[ic*i+j] = a[ia*i+j] | b[ib*i+];
}

117

polar

{xe”polar”}{xe “polar”}

Summary

polar rectangular to polar conversion
C Usage

void polar (float *a, int ia, float *c, int ic, int n);

Arguments

a complex vector a

ia stride for vector a

c results in complex vector ¢

ic stride for vector ¢

n element count of vectors
Description

polar converts elements of complex vector a from rectangular to polar form and
stores the results in complex vector c. The algorithm for the conversion is

for i=0 to n-1
real (c[i])
imag(cli])

sqrt(real (a[i])**2 + imag(a[i])**2)
atan2(imag(af[i]), real(a[i]))

118

PowerSpectrum

PowerSpectrum Power spectrum on float image
C Usage
#i nclude <fastlib. h>
voi d Power Spectrum(FLOAT *a, int ia, float *c, int ic, int nr, int
nc);
Description

The PowerSpectrum function determines the power spectrum of the complex
FFT located at a. The output power spectrum is placed at c. The following C
code fragment describes the function:

#i ncl ude <fastlib. h>
voi d Power Spectrum(FLOAT *a, int ia, float *c, int ic, int nr, int

nc)
{
long i, j;
float real, inmag;
for (i =0; i <nr; i+4)
{
for (j =0; j < nc; j++)
real = a[i*ia + j].real;
img = a[i*ia + j].inmg;
c[i*ic +] =real*real + inag*inag;
}
}
}

119

Prewitt

Prewitt Prewitt operator on float image

C Usage

#i ncl ude <fastlib. h>
void Prewitt(float *a, int ia, float *b, int ib, int nrow, int
ncol) ;

Description

The Prewitt function applies the Prewitt gradient operator to the input image
located at a. The input image is convolved with the two Prewitt operators, which
are listed below. The absolute values of the two edge images are summed to
give the gradient image. The gradient image is placed at c.

fl oat prewitthl[9] = {
0.33, 0.0, -0.33,
0.33, 0.0, -0.33,
0.33, 0.0, -0.33
)
fl oat prewitth2[9] = {
0.33, -0.33, -0.33,
0.00, 0.00, 0.00,
0.33, 0.33, 0.33
}

120

rect

{xe"rect” {xe “rect”}

Summary

rect polar to rectangular conversion
C Usage

void rect (float *a, int ia, float *c, int ic, int n);

Arguments

a complex vector a

ia stride for vector a

c results in complex vector ¢

ic stride for vector ¢

n element count of vectors
Description

rect converts the elements of complex vector a from polar to rectangular form
and stores the results in complex vector c. The algorithm for the conversion is

for i=0 to n-1
real (c[i])
imag(c[i])

real (a[i]) * cos(imag(a[i]))
real (a[i]) * sin(imag(a[i]))

121

C Usage

Reflect

Reflect Reflect float image

#i ncl ude <fastlib. h>
void Reflect (float *a, int ia, float *c, int ic, int nr, int nc,
i nt node);

Description

The Reflect function flips the input float image, a, about the vertical, horizontal or
diagonal axis. The axis of reflection is given by the input parameter, mode
(vertical = 0, horizontal = 1, diagonal = 2). The output image is stored at c. The
following C code fragment describes the function:

#defi ne VERTI CAL 0
#defi ne HORI ZONTAL 1
#defi ne DI AGONAL 2

void Reflect (float *a, int ia, float *c, int ic, int nr, int nc,
i nt node)

{

int i, j, mdrow, crow, ccol;
swi tch (node)

{
case HORI ZONTAL :

for (i =0, crow=nc - 1; i < nc; i++, crow-)
for (j =0; j <nc; j++)
c[crowic +] = a[i*ia +j];
br eak;
case VERTI CAL :
for (i =0; i < nr; i++)
for (j =0, ccol =nc - 1; j <nc; j++ ccol--
)
c[i*ic + ccol] = a[i*ia + j];
br eak;
case DI AGONAL :
for (i =0; i < nr; i++)
for (j =0; j <nc; j++)
c[j*ic +i] =a[i*ia +j];
br eak;
defaul t:
br eak;
}
}

122

C Usage

Reflect8

Reflect8 Reflect 8-bit image

#i ncl ude <fastlib. h>

void Reflect8 (unsigned char *a, int ia, unsigned char *c, int ic,
int nr, int nc,

int node);

Description

The Reflect8 function flips the input 8-bit image, a, about the vertical, horizontal
or diagonal axis. The axis of reflection is given by the input parameter, mode
(vertical = 0, horizontal = 1, diagonal = 2). The output image is stored at c. The
following C code fragment describes the function:

#defi ne VERTI CAL 0
#defi ne HORI ZONTAL 1
#defi ne DI AGONAL 2

void Reflect8 (unsigned char *a, int ia, unsigned char *c, int ic,
int nr, int nc, int node)

{
int i, j, mdrow, crow, ccol;
switch (node)
case HORI ZONTAL :
for (i =0, crow=nc - 1; i < nc; i++ crow-)
for (j =0; j < nc; j+4)
c[crowic +j] = a[i*ia + j];
br eak;
case VERTI CAL :
for (i =0; i < nr; i++)
for (j =0, ccol =nc - 1; j < nc; j++, ccol--
)
c[i*ic + ccol] = a[i*ia + j];
br eak;
case DI AGONAL :
for (i =0; i < nr; i++)
for (j =0; j < nc; j+4)
c[j*ic +i] = a[i*ia +]];
br eak;
defaul t:
br eak;
}
}

123

Reflect16

Reflect16 Reflect 8-bit image
C Usage
#i ncl ude <fastlib. h>
voi d Reflect16 (unsigned short *a, int ia, unsigned short *c, int
ic,
int nr, int nc, int node);
Description

The Reflect16 function flips the input 16-bit image, a, about the vertical,
horizontal or diagonal axis. The axis of reflection is given by the input parameter,
mode (vertical = 0, horizontal = 1, diagonal = 2). The output image is stored at c.
The following C code fragment describes the function:

#defi ne VERTI CAL 0
#defi ne HORI ZONTAL 1
#defi ne DI AGONAL 2

voi d Reflect16 (unsigned short *a, int ia, unsigned short *c, int
ic, int nr, int nc, int node)

{
int i, j, mdrow, crow, ccol;
switch (node)
{
case HORI ZONTAL :
for (i =0, crow=nc - 1; i < nc; i++ crow-)
for (j =0; j < nc; j++)
c[crowic +j] = a[i*ia + j];
br eak;
case VERTI CAL :
for (i =0; i < nr; i++)
for (j =0, ccol =nc - 1; j < nc; j++, ccol--
)
c[i*ic + ccol] = a[i*ia + j];
br eak;
case DI AGONAL :
for (i =0; i < nr; i++)
for (j =0, j < nc; j+4)
c[j*ic +i] = a[i*ia +]];
br eak;
defaul t:
br eak;
}
}

124

ReglLut8

ReglLut8 Allocate 8-Bit Lookup Table

C Usage

#i nclude <fastlib. h>
int *ReglLut8 (unsigned char *a);

Description

The RegLut8 function allocates and initializes an intermediate form of the 8-bit
input lookup table a suitable for use with Lut8. The intermediate table is
allocated (using malloc) and may be deallocated using free. Multiple
intermediate tables may be allocated using RegLut8. RegLut8 returns an
integer pointer to the intermediate table, or NULL if the allocation failed.

Refer to Lut8 for additional information and sample code on the use of RegLut8.

125

RegLut8s

ReglLut8s Allocate 16-Bit Lookup Table

C Usage

#i nclude <fastlib. h>
int *ReglLut8s (unsigned short *a)

Description

The RegLut8s function allocates and initializes an intermediate form of the 8-bit
to 16-bit input lookup table a suitable for use with Lut8s. The intermediate table
is allocated (using malloc) and may be deallocated using free. Multiple
intermediate tables may be allocated using RegLut8s. RegLut8s returns an
integer pointer to the intermediate table, or NULL if the allocation failed.

Refer to Lut8s for additional information and sample code on the use of
ReglLut8s.

126

rfft

{xe” rfft” {xe “rfft"}

Summary

C Usage

Arguments

Description

rfft real to complex FFT (in place)

void rfft (float *a, int n, int direction)

a input vector a.
n element count of vector. Must be a power of 2.
direction processing mode

1 for forward fft
-1 for inverse fft

rfft computes either a forward real-to-complex or inverse complex-to-real FFT on
the data in vector a, and stores the results back into vector a. When performing a
forward fft, vector a is a real vector. Vector a is a complex vector in packed
format when performing an inverse fft.

If direction = 1, the function performs a forward FFT. The results are not scaled,
and they may be scaled using rfftsc to multiply by 1/(2*n). if direction = -1, the
function performs an inverse FFT. The results do not need to be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT length required in calls to the rfft
routine. In other words, bldwts should be called with the largest argument n that
will be used with rrft during the course of an application.

The rfft function uses a standard packed format for complex results of a real
FFT. The forward FFT of an n element real valued vector produces n complex
results. But due to symmetry only (n/2+1) complex results are independent. The
first n/2 complex results are returned in place of the input vector a, except that,
since symmetry dictates that the imaginary portions of the 0" and n/2th complex
results must be zero, the real portion of the n/2th complex result can be (and is)
returned in place of the imaginary part of the o™ (first) complex entry.

127

Rfft2D

Rfft2D 2-D real FFT and inverse on float image

C Usage
#i ncl ude <fastlib. h>

void Rfft2D (float *a, int nr, int nc, int direction);
Description

The Rfft2D function performs a two dimensional complex FFT on the real data in
matrix a and stores the results back into matrix a. The arguments nr and nc are
the number of rows and columns in image a, and both must be powers of 2. If
direction is 1, a forward FFT is computed, if direction is -1, an inverse FFT is
performed.

Forward transform results are not scaled, and may multiplied by 1/(2*nr*nc) (refer
to MulScalar). Inverse transform results need not be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT length required in calls to the
rfft2d routine.

The Rfft2D function uses a standard packed format for storing complex results of
areal 2D FFT. The forward FFT of an nr by nc element real valued matrix
produces nr*nc complex results. But due to symmetry only nr*nc real results
need be stored. The first two columns of result a contain two complex results
stored in the rfft packed format (refer to rfft). The remaining column pairs of a
form complex results.

The library function uprft2 may be used to unpack the result of rfft2d into an nr
by nc complex matrix, which when scaled produces the same result were the
cfft2d function used on a real valued complex input matrix.

128

rfftb

{xe”rfftb” }{xe “rfftb”}

Summary
rfftb real to complex FFT (not in place)
C Usage
void rfftb (float *a, float * ¢, int n, int direction)
Arguments
a input vector a.
c output vector c.
n element count of vector; must be a power of 2
direction processing mode
1 for forward fft
-1 for inverse fft
Description

rfftb computes either a forward or inverse real-to-complex FFT on the data in
vector a, and stores the results into vector c. If a forward FFT is being
performed, then vector a is a real vector and vector ¢ is a complex vector in
packed format. If a reverse FFT is being performed, then vector a is a complex
vector in packed format while vector c is a real vector.

If direction = 1, the function performs a forward FFT. The results are not scaled,
and they may be scaled using rfftsc to multiply by 1/(2*n). if direction = -1, the
function performs an inverse FFT. The results to not need to be scaled.

A call must have been previously made to the function bldwts in order to build a
weight vector required by the FFT functions. bldwts need only be called once,
with an argument specifying the maximum FFT length required in calls to the rfftb
routine.

The rfftb function uses a standard packed format for complex results of a real
FFT. The forward FFT of an n element real valued vector produces n complex
results. But due to symmetry only (n/2+1) complex results are independent. The
first n/2 complex results are returned in place of the output vector c, except that,
since symmetry dictates that the imaginary portions of the 0™ and n/2th complex
results must be zero, the real portion of the n/2th complex result can be (and is)
returned in place of the imaginary part of the o (first) complex entry.

129

rfftsc

{xe”rfftsc” }{xe “rfftsc”}

Summary

C Usage

Arguments

Description

rfftsc real FFT scale and format

void rfftsc (float *a, int n, int iflag, int iscale)

a real input vector a
n element count of vector
iflag formatting flag
iflag = 0, no packing
iflag = 2, unpack into n/2 complex elements.
iflag = 3, unpack into n/2+1 complex elements
iflag = -2, pack from n/2 complex elements to real fft packed format
iflag = -3, pack from n/2+1 complex elements to real fft packed format
iscale scale flag
iscale = 0, no scaling
iscale = 1, scale elements of a by 1/(2*n)
iscale = -1, scale elements of a by 1/(4*n)

The rfftsc takes the results of a real to complex forward FFT and packs or
unpacks it into a more conventional complex format. In addition, the results may
be scaled by a factor of 1/(2*n) or 1/(4*n).

The description of packing and unpacking is as follows. Given A[n/2] is the
complex result of an n element real to complex FFT, then:

if iflag is 2, then

real (A[0]) =real (AO0]),
img (A[0]) = 0.0

if iflag is 3, then
real (Aln/2]) =img (A0]),
img (Aln/2]) =0.0
real (A[0]) =real (AO0]),
img (A[0]) = 0.0

if iflagis -2, then
real (A eal (A0]),

0]) =rea
img (A[0]) =0.0
if iflagis -3, then

real (A[0]) =real (A0]),
img (A[0]) =real (A n/2])

130

rmsqv

{xe’rmsqgv” }{xe “rmsqv”}

Summary
rmsqv root mean square of vector elements
C Usage
float a[], c;
int ia, n;
void rmeqv (float *a, int ia, float *c, int n);
Arguments
a real vector a
ia stride for vector a
c real scalar ¢ containing result
n element count of vectors
Description

rmsqv computes the square root of the mean value of the squares of the
elements of real vector a and stores the result in scalar ¢ using the algorithm

for i=0 to n-1
c =sqrt(sumali]l*a[i]) / n)

131

Roberts

Roberts Roberts operator on float image

C Usage

#i ncl ude <fastlib. h>
void Roberts (float *a, int ia, float *b, int ib, int nrow, int
ncol) ;

Description

The Roberts function applies the Roberts gradient operator to the input image
located at a. The input image is convolved with the two Roberts operators, which
are listed below. The absolute values of the two edge images are summed to
give the gradient image. The gradient image is placed at c.

Fl oat roberts_hl[9] = {
0.0, 0.0, -1.0,
0.0, 1.0, 0.0,
0.0, 0.0, 0.0

}
fl oat roberts_h2[9] = {
. 1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 0.0

b

132

Rotate

Rotate Rotate float image

C Usage

#i ncl ude <fastlib. h>
void Rotate (float *a, int ia, float *b, float *c, int ic, int nr,
int nc);

Description

The Rotate function performs a rotation of the float image, a, about the image
center. The angle of rotation is given in degrees by *b, which rotates the image in
a counter-clockwise direction with respect to the x-axis. The output image is
stored at c. The following C code fragment describes the function:

/*
The input image is rotated by an angle *b about its center in a
count er - clockwi se direction with respect to the x-axis.
coordi nate transformation
rotation angle will be counter-clockwise wt the x-axis
x- coor di nat e:
(x* - maxx/2) = (x - maxx/2)*cos(b) - (maxy/2 - y)*sin(b)
X’ x*cos(b) + (1 - cos(b))*maxx/2 - (maxy/2 - y)*sin(b)
x*cos_b + coefl + y*sin_b
x*cos_b + ydependl

Xp
Xp

y- coor di nat e:
(maxy/2 - y') = (x - maxx/2)*sin(b) + (maxy/2 - y)*cos(b)

y' = (maxx/2 - x)*sin(b) + y*cos(b) + (1 - cos(b))*maxy/2

y' = -x*sin(b) + y*cos(b) + sin(b)*nc/2 + (1 - cos(b))*nr/2

yp = -x*sin_b + y*cos_b + coef2

yp = ydepend2 - x*sin_b

*/

void Rotate (float *a, int ia, float *b, float *c, int ic, int nr,
int nc)

{

int x, xp;

inty, yp;

float angle_b, sin_b, nsin_b, cos_b, coefl, coef2;
fl oat ydependl, ydepend2, nr_shift, nc_shift;

angle_b = *b * DEQRAD,
sin_b = (float) sinf(angle_b);
cos_b = (float) cosf(angle_b);

/* negate sine value */
nsin_ b =-1.0 * sin_b;

nr_shift = (nr - 1)/2.0;
nc_shift = (nc - 1)/2.0;
coefl = (1.0 - cos_b)*nc_shift - (nr_shift * sin_b);
coef2 = (1.0 - cos_b)*nr_shift + (nc_shift * sin_b);

for (y =0; y <nr; y ++)

ydependl = coefl + y*sin_b;

133

ydepend2 = coef2 + y*cos_b;
for (x = 0; X < nc; X ++)

{
(int)(x*cos_b + ydependl + 0.5);

Xp =
yp = (int)(ydepend2 - x*sin_b + 0.5);
if (xp>=nc || xp <O [] yp>=nr || yp <0)
conti nue;
clic*yp + xp] = a[ia*y + x];
}
}

134

C Usage

Rotate8

Rotate8 Rotate 8-bit image

#i ncl ude <fastlib. h>

voi d Rotate8 (unsigned char *a, int ia, float *b, unsigned char
*c, int ic, int nr,

int nc);

Description

The Rotate function performs a rotation of the 8-bit image, a, about the image
center. The angle of rotation is given in degrees by *b, which rotates the image
in a counter-clockwise direction with respect to the x-axis. The output image is
stored at ¢c. The following C code fragment describes the function:

/*
The input image is rotated by an angle *b about its center in a
count er - cl ockwi se direction with respect to the x-axis.
coordi nate transformation
rotation angle will be counter-clockwise wt the x-axis
x-coor di nat e:
(x" - maxx/2) = (x - maxx/2)*cos(b) - (maxy/2 - y)*sin(b)

x'" = x*cos(b) + (1 - cos(b))*maxx/2 - (maxy/2 - y)*sin(b)
Xp = x*cos_b + coefl + y*sin_b
Xp = x*cos_b + ydependl

y- coor di nat e:
(maxy/2 - y') = (x - maxx/2)*sin(b) + (maxy/2 - y)*cos(b)

y' = (maxx/2 - x)*sin(b) + y*cos(b) + (1 - cos(b))*naxy/2
y' = -x*sin(b) + y*cos(b) + sin(b)*nc/2 + (1 - cos(b))*nr/2
yp = -x*sin_b + y*cos_b + coef2

yp = ydepend2 - x*sin_b

*/

voi d Rotate8 (unsigned char *a, int ia, float *b, unsigned char
*c, int ic, int nr, int nc)

{

int x, xp;

inty, yp;

float angle_b, sin_b, nsin_b, cos_b, coefl, coef2;

float ydependl, ydepend2, nr_shift, nc_shift;

angle_ b = *b * DEQRAD;
sin_b = (float) sinf(angle_b);
cos_b = (float) cosf(angle_b);

/* negate sine value */
nsin_b =-1.0 * sin_b;

nr_shift = (nr - 1)/2.0;
nc_shift = (nc - 1)/2.0;
coefl = (1.0 - cos_b)*nc_shift - (nr_shift * sin_b);
coef2 = (1.0 - cos_b)*nr_shift + (nc_shift * sin_b);

for (y =0, y <nr; y ++)
{

135

ydependl coefl + y*sin_b;
ydepend2 coef2 + y*cos_b;
for (x = 0; x < nc; x ++)

{

xp = (int)(x*cos_b + ydependl + 0.5);
yp = (int)(ydepend2 - x*sin_b + 0.5);
if (xp>nc || xp<O0]]|] yp>nr || yp <0
conti nue;
cl[ic*yp + xp] = a[ia*y + X];
}
}

136

Rotatel6

Rotate16 Rotate 16 bit image

C Usage

#i ncl ude <fastlib. h>
voi d Rotatel6 (unsigned short *a, int ia, float *b, unsigned short
*
c,
int ic, int nr, int nc);

Description

The Rotatel6 function performs a rotation of the 16-bit image, a, about the image
center. The angle of rotation is given in degrees by *b, which rotates the image
in a counter-clockwise direction with respect to the x-axis. The output image is
stored at ¢c. The following C code fragment describes the function:

/*
The input image is rotated by an angle *b about its center in a
count er - cl ockwi se direction with respect to the x-axis.
coordi nate transformation
rotation angle will be counter-clockwise wt the x-axis
x-coordi nate
(x" - maxx/2) = (x - maxx/2)*cos(b) - (maxy/2 - y)*sin(b)

x'" = x*cos(b) + (1 - cos(b))*maxx/2 - (maxy/2 - y)*sin(b)
Xp = x*cos_b + coefl + y*sin_b
Xp = x*cos_b + ydependl

y-coordi nate
(maxy/2 - y') = (x - maxx/2)*sin(b) + (maxy/2 - y)*cos(b)

y' = (maxx/2 - x)*sin(b) + y*cos(b) + (1 - cos(b))*naxy/2
y' = -x*sin(b) + y*cos(b) + sin(b)*nc/2 + (1 - cos(b))*nr/2
yp = -x*sin_b + y*cos_b + coef2

yp = ydepend2 - x*sin_b

*/

voi d Rotatel6 (unsigned short *a, int ia, float *b, unsigned short
*c, int ic, int nr, int nc)

{

int x, xp;

inty, yp;

float angle_b, sin_b, nsin_b, cos_b, coefl, coef2;

float ydependl, ydepend2, nr_shift, nc_shift;

angle_ b = *b * DEQRAD;
sin_b = (float) sinf(angle_b);
cos_b = (float) cosf(angle_b);

/* negate sine value */
nsin_b =-1.0 * sin_b;

nr_shift = (nr - 1)/2.0;
nc_shift = (nc - 1)/2.0;
coefl = (1.0 - cos_b)*nc_shift - (nr_shift * sin_b);
coef2 = (1.0 - cos_b)*nr_shift + (nc_shift * sin_b);

for (y =0, y <nr; y ++)
{

137

ydependl coefl + y*sin_b;
ydepend2 coef2 + y*cos_b;
for (x = 0; x < nc; x ++)

{

xp = (int)(x*cos_b + ydependl + 0.5);
yp = (int)(ydepend2 - x*sin_b + 0.5);
if (xp>nc || xp<O0]]|] yp>nr || yp <0
conti nue;
cl[ic*yp + xp] = a[ia*y + X];
}
}

138

Sobel

Sobel Sobel operator on float image

#i ncl ude <fastlib. h>
voi d Sobel (float *a, int ia,
ncol) ;

Description

float *b, int ib, int

nrow, int

The Sobel function applies the Sobel gradient operator to the input image located
at a. The input image is convolved with the two Sobel operators, which are listed
below. The absolute values of the two edge images are summed to give the

gradient image. The gradient image is placed at c.

fl oat sobel h1[9] = {
. 1.00, 0.0, 1.00,
. 2.00, 0.0, 2.00,
. 1.00, 0.0, 1.00
}s
fl oat sobel h2[9] = {
. 1.00, -2.00, -1.00,
0.00, 0. 00,
1.00, 2.00,
};

139

0. 00,
1.00

C Usage

Sub

Sub Subtract images

#i ncl ude <fastlib. h>

void Sub (float *a, int ia, float *b, int ib, float *c, int ic,
int nr,

int nc);

Description

The Sub function computes the arithmetic difference of two input images. The
following C fragment describes the function:

void Sub (float *a, int ia, float *b, int ib, float *c, int ic,
int nr, int nc)

-
int i;
int j;
for (i =0; i <nr; i ++)
for (j =0, j <nc; j ++)
c[i*ic+] = a[i*ia+j]-b[i*ib+j];
}

140

Sum

C Usage

Sum

Sum float image to float image

#i ncl ude <fastlib. h>

void Sum (fl oat

Description

voi d Sum (fl oat

t
int i;
int j;

for (i =

*a’

*a,

0;

for (j

int ia, float *c, int ic,

int ia, float *c, int ic,

<nr; i ++)
=0; j <nc; j +4)
cl[ic*i+j] += a[ia*i+];

141

int nr,

int nr,

int nc)

int nc)

Suma8i

Sum8i Sum 8-bit image to 32 bit image

C Usage

#i ncl ude <fastlib. h>
void SunBi (unsigned char *a, int ia, u_long *c, int ic, int nr,
int nc);

Description

The Sum8i function sums the 8-bit image data input from image a with the 32 bit
image c. The following C code fragment describes the function.

voi d SunBi (unsigned char *a, int ia, u_long *c, int ic, int nr,

int nc)

t

int i;

int j;

for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[ic*i+j] += a[ia*i+];

}

142

Sum16i

Sum16i Sum 16 bit image to 32 bit image

C Usage

#i ncl ude <fastlib. h>
voi d Sunl6i (unsigned short *a, int ia, u_long *c, int ic, int nr,
int nc);

Description

The Sum16i function sums the 16 bit image data input from image a with the 32
bit image c. The following C code fragment describes the function.

voi d Sunl6i (unsigned short *a, int ia, u_long *c, int nr, int nc)

t
int i;
int j;
for (i =0; i <nr; i ++)
for (j =05 j <nc; j ++)
cl[ic*i+j] += a[ia*i+];
}

143

Sum8f

Sum§8f Sum 8-bit image to float image

C Usage

#i ncl ude <fastlib. h>
voi d SunBf (unsigned char *a, int ia, float *c, int ic, int nr,
int nc);

Description

The Sum8f function sums the 8-bit image data input from image a with float
image c. The following C code fragment describes the function.

voi d SunBf (unsigned char *a, int ia, float *c, int ic, int nr,

int nc)

L

int i;

int j;

for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
cl[ic*i+j] += (float) a[ia*i+];

}

144

Sumi6f

int

Sum16f Sum 16 bit image to float image
C Usage
#i ncl ude <fastlib. h>
voi d Sunl6f (unsigned short *a, int ia, float *c,
int nc);
Description
voi d Sunl6f (unsigned short *a, int ia, float *c, int
int nc)
{
int i;
int j;
for (i =0; i <nr; i ++)
for (j =05 j <nc; j ++4)
c[ic*i+j] += (float) a[ia*i+];
}

145

ic,

ic,

int

int

nr,

nr,

svdiv

{xe”svdiv” }{xe “svdiv”}

Summary

svdiv scalar vector divide
C Usage

void svdiv (float *a, float * b, int ib, float *c, int ic, int n);

Arguments

a real scalar a

b real vector b

ib stride for vector b

c real vector ¢

ic stride for vector ¢

n element count of vectors
Description

svdiv divides scalar a by real vector b putting the results in real vector c.

for i=0 to n-1
c[i] =a/l b[i]

146

sve

{xe"sve”}{xe “sve”}

Summary
sve sum of vector elements
C Usage
void sve (float *a, int ia, float *c, int n);

Arguments

A real vector a

ia stride for vector a

C real scalar c containing result

N element count of vectors
Description

sve stores into real scalar ¢ the sum of the elements of real vector a computed by
the algorithm

for i=0 to n-1

c = sunm(ali])

147

svemg

{xe”svemg” }H{xe “svemqg”}

Summary

svemg sum of vector element magnitudes
C Usage

void sveng (float *a, int ia, float *c, int n);

Arguments

a real vector a

ia stride for vector a

c real scalar c containing result

n element count of vectors
Description

svemg stores into real scalar ¢ the sum of the absolute values of the elements of
real vector a using the algorithm

for i=0 to n-1
c = sun(abs(a[i]))

148

sves(

{xe"svesq” }{xe “svesq”}

Summary

svesq sum of vector element squares
C Usage

voi d svesq (float *a, int ia, float *c, int n);

Arguments

a real vector a

ia stride for vector a

c real scalar c containing result

n element count of vectors
Description

svesq stores into real scalar ¢ the sum the squares of the elements of real vector
a using the algorithm

for i=0 to n-1

c = sun(af[i]*a[i])

149

SVS

{xe"svs”}{xe “svs”}

Summary

SVs sum of vector signed element squares
C Usage

void svs (float *a, int ia, float *c, int n);

Arguments

a real vector a

ia stride for vector a

c real scalar c containing result

n element count of vectors
Description

svs stores into real scalar ¢ the sum of the signed squares of the elements of real
vector a using the algorithm

for i=0 to n-1
c = sunm(a[i] * abs(a[i]))

150

C Usage

Thr8I2m

Thr812m Threshold 8-bit to least-to-most packed binary

#i nclude <fastlib. h>

void Thr8l 2m (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr,

int nc);

Description

The Thr8I2m function performs an 8-bit thresholding of image a, placing the
packed binary (ordered least-to-most) in image c¢. The following C code fragment
describes the function:

static unsigned char bitset[8] = {0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80};

voi d Thr8l 2m (unsi gned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr, int nc)

{
int i;
int j;
int k;
int threshold;
int bitcnt;
threshold = *b;
bitcnt = 0;
for (i =0; i <nr; i ++)
{
k = 0;
c[ic*i] =0; /* init to 0 */
for (j =0; j <nc; j ++)
{
if (a[ia*i + j] >= threshol d)
c[ic*i + K] |= bitset[bitcnt];
}
bi t cnt ++;

if (bitcnt > 7)
{ [/* begin packing a new byte */

K++;
cl[ic*i + k] =0; /* init to 0 */
bitcnt = 0;
}
}
}
}

151

C Usage

Thr8m2l

Thr8m?2I Threshold 8-bit to most-to-least packed binary

#i nclude <fastlib. h>

void Thr8n2l (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr,

int nc);

Description

The Thr8m2I function performs an 8-bit thresholding of image a, placing the
packed binary (ordered most-to-least) in image c. The following C code fragment
describes the function:

static unsigned char bitset[8] = {0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80};

voi d Thr8n2l (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr, int nc)

Lo

int i;

int j;

int k;

int threshold;

int bitcnt;

threshold = *b;

bitcnt = 7;
for (i =0; i <nr; i ++)
{
k = 0;
c[ic*i] =0; /* init to 0 */
for (j =0; j <nc; j ++)
{
if (a[ia*i + j] >= threshol d)
c[ic*i + K] |= bitset[bitcnt];
}
bitcnt--;

if (bitcnt < 0)

{ [/* begin packing a new byte */
K++;
cl[ic*i +
bitcnt =

k] =0; /* init to O */
7,
}

152

C Usage

Thr8

Thr8 Threshold 8-bit

#i ncl ude <fastlib. h>
void Thr8 (unsigned char *a, int ia, unsigned char *b, unsigned

char *c, int ic, int nr,
int nc);
Description

The Thr8 thresholds the 8-bit image a against the threshold value *b. The output
generated is 8-bit image c, with value decimal 255 for pixels of a that equal or
exceed the threshold, and O for pixels that are less than the threshold. The
following C code fragment describes the function:

void Thr8 (unsigned char *a, int ia, unsigned char *b, unsigned
char *c, int ic, int nr, int nc)
{
int i;
int j;
int threshol d;
threshold = *b;
for (i =0; i <nr; i ++4)
for (j =05 j <nc; j ++4)
if (a[ia*i + j] >= threshol d)
c[ic*i +] = 255
el se
c[ic*i +j] = 0;
}

153

Uninterlace

Uninterlace Convert interlaced to non-interlaced image
C Usage
#i nclude <fastlib. h>
void Uninterlace (unsigned char *odd, int iodd, unsigned char
*even, int ieven,
unsi gned char *c, int ic, int nr, int nc);
Description

The Uninterlace function takes as input two fields of an interlaced image (odd
and even), and synthesizes a non-interlaced image in ¢c. The odd rows of ¢ are
built from odd and the even rows from even. The following code describes the
function:

void Uninterlace (unsigned char *odd, int iodd, unsigned char
*even, int ieven, unsigned char *c, int ic, int nr, int nc)

{
Mov8 (odd, iodd, ¢, 2*ic, nr, nc);
Mov8 (even, ieven, c+ic, 2*ic, nr, nc);

154

uprft2

{xe”uprft2” }{xe “svs”}

Summary

uprft2 unpack results of rfft2d
C Usage

void uprft2 (float *a, float *c, int nr, int nc);

Arguments

a real input matrix a

c complex output matrix ¢

nr number of matrix rows

nc number of matrix columns
Description

uprft2 takes the results of the two dimensional real to complex FFT function
(rfft2d) and unpacks the results from the packed format of rfft2d to a full nr*nc
element complex matrix. The resultant matrix is the same as what would result
from using cfft2d on a real valued complex input matrix.

155

vabs

{xe”vabs” }{xe “svs”}

Summary

vabs vector absolute value
C Usage

void vabs (float *a, int ia, float * c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vabs computes the absolute value of the elements of real vector a and stores the
results into real vector ¢

for i=0 to n-1
c[i] = abs(a[i])

156

vadd

{xe”vadd” }{xe “svs”}

Summary
vadd vector add
C Usage
void vadd (float *a, int ia, float * b, int ib, float * ¢, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vadd adds the elements of real vectors a and b and stores the results into real
vector ¢

for i=0 to n-1
c[i] = a[i] + b[i]

157

valogl10

{xe”valogl10”}{xe “svs”}

Summary

valog10 vector anti-log base 10
C Usage

void val ogl0 (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

valog10 computes the anti-logarithm base 10 of each element of real vector a
and stores the results in real vector ¢ using the algorithm

for i=0 to n-1
c[i] = alogl0(al[i])

158

vam

{xe”vam” }{xe “svs”}

Summary
vam vector add and multiply
C Usage
void vam (float *a, int ia, float *b, int ib, float *c, int ic,
float *d, int id, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c real vector ¢
ic stride for vector ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

vam adds elements of real vectors a and b, multiplies that sum by the
corresponding element of real vector c, and stores the results into real vector d

for i=0 to n-1

dii] = (a[i] + b[i]) * c[i]

159

{xe”vand” }{xe “svs”}

Summary

vand

C Usage

void vand (int *a,

Arguments

Description

vand

vector logical AND

int ia, int *b, int ib, int *c, int ic, int n);

integer vector a

stride for vector a
integer vector b

stride for vector b

results in integer vector ¢
stride for vector ¢
element count of vectors

vand forms the bitwise logical AND of the corresponding 32-bit integer elements
of integer vectors a and b and stores the results into real vector c.

i=0 to n-1
cli] ali]

for

.AND. b[i]

160

vatan

{xe”vatan” }{xe “svs”}

Summary

vatan vector arctangent
C Usage

void vatan (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in radians in real vector ¢

ic stride for vector c

n element count of vectors
Description

vatan computes the arctangent of the elements of real vector a and stores the
results in radians in real vector ¢ according to the algorithm

for i=0 to n-1
c[i] = atan (a[i])

161

vatan?

{xe”vatan2” }{xe “svs”}

Summary
vatan2 vector two argument arctangent
C Usage
void vatan2 (float *a, int ia, float *b, int ib, float *c,
int ic, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in radians in real vector ¢
ic stride for vector ¢
n element count of vectors
Description

vatan2 computes the two argument arctangent of the corresponding elements of
real vectors a and b and stores the results in radians in real vector ¢ according to
the algorithm

for i=0 to n-1
c[i] = atan2(a[i],b[i])

162

vclip

{xe”vclip” }{xe “svs”}

Summary
Vclip vector clip
C Usage
void vclip (float *a, int ia, float *b, float *c, float *d,
int id, int n);
Arguments
a real vector a
ia stride for vector a
b real scalar, lower threshold
c real scalar, upper threshold
d results in real vector d
id stride for vector d
n element count of vectors
Description

vclip clips the value of each element in real vector a to be within the range
specified by scalars b and c. The results are stored in vector d. The algorithm is

for i=0 to n-1
if a[i] >c, tmp = ¢

163

vclr

{xe”vclr’}H{xe “svs”}

Summary

Vclr vector clear
C Usage

void veclr (float *c, int ic, int n);

Arguments

c results in real vector ¢

ic stride for vector ¢

n element count of vector ¢
Description

vclr sets all the elements of real vector ¢ to 0.0

for i=0 to n-1
c[i] =0.0

164

VCOS

{xe”vcos” }{xe “svs”}

Summary

Vcos vector cosine
C Usage

void vcos (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a, in radians

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vcos computes the cosine of each element of real vector a and stores the results
in vector ¢

for i=0 to n-1
c[i] = cos(a[i])

165

vdist

{xe”vdist” }{xe “svs”}

Summary
vdist vector distance
C Usage
void vdist (float *a, int ia, float *b, int ib, float *c,
int ic, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vdist computes the square root of the sum of the squares of corresponding
elements of real vectors a and b and stores the results into real vector ¢

for i=0 to n-1
c[i] =sqrt(a[i]*a[i] + b[i]*b[i])

166

{xe”vdiv’H{xe “svs”}

Summary
vdiv
C Usage

void vdiv (float
int n);

Arguments

Description

vdiv

vector divide

*a, int ia, float *b, int ib, float *c, int ic,

real vector a

stride for vector a

real vector b

stride for vector b
results in real vector c
stride for vector ¢
element count of vectors

vdiv divides each element of real vector a by the corresponding element of real
vector b and stores the result in real vector c. The algorithm is

i=0 to n-1
c[i] =

for

a[i] / b[i]

167

venvlp

{xe”venviIp”}{xe “svs”}

Summary
venvip vector envelope
C Usage
void venvlp (float *a, int ia, float *b, int ib, float *c, int ic,
float *d, int id, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c real vector ¢
ic stride for vector ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

venvlp copies elements of real vector c to real vector d when the element is
outside the range defined by corresponding elements of real vectors a and b;
otherwise it copies 0.0 to the element of vector d. The algorithm is written

for i=0 to n-1
if (c[i] > a[i]) d[i] = c[i]
else if (c[i] <b[i]) d[i] = c[i]
else d[i] = 0.0

168

veqv

{xe”veqv” H{xe “svs”}

Summary
veqv vector logical EQUIVALENCE
C Usage
void veqv (int *a, int ia, int *b, int ib, int *c, int ic, int n);

Arguments

a integer vector a

ia stride for vector a

b integer vector b

ib stride for vector b

c results in integer vector ¢

ic stride for vector ¢

n element count of vectors
Description

veqv forms the bitwise logical EQUIVALENCE (exclusive NOR) of the
corresponding 32-bit integer elements of integer vectors a and b and stores the
results into integer vector ¢

for i=0 to n-1
c[i] = a[i] .XNOR Db[i]

169

vexp

{xe”vexp” }{xe “svs”}

Summary
vexp vector exponential
C Usage
void vexp (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vexp computes the natural exponential of each element of real vector a and
stores the results in real vector ¢ using the algorithm

for i=0 to n-1
c[i] = exp(al[i])

170

vfill

{xe”vfill" }{xe “svs”}

Summary

VAill vector fill with constant
C Usage

void vfill (float *a, float *c, int ic, int n);

Arguments

a real scalar a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vfill fills the elements of real vector ¢ with the real scalar in a.

for i=0 to n-1
c[i] = a

171

vfix

{xe”vfix"}{xe “svs”}

Summary
vfix vector fix to integer
C Usage
float a[];
int ia, ¢c[], ic, n, direction;
void vfix (float *a, int ia, int *c, int ic, int n, int rounding);
Arguments
a real vector a
ia stride for vector a
c results in integer vector ¢
ic stride for vector ¢
n element count of vectors
rounding rounding mode
rounding = 0 to round
rounding = 1 to truncate
Description

vfix changes the elements of real vector a from type float to type int and stores
the results in integer vector ¢. rounding specifies whether to round or truncate

for i=0 to n-1

if rounding=0, c[i] = int((a[i]+sign(a[i])*0.5))
else, c[i] =int(a[i])

172

vfix8

{xe”vfix8” }{xe “svs”}

Summary
vfix8 vector fix to 8 bit integer
C Usage
void vfix8 (float *a, int ia, char *c, int ic, int n, int
roundi ng) ;
Arguments
a real vector a
ia stride for vector a
c results in 8 bit integer vector ¢
ic stride for vector ¢
n element count of vectors
rounding rounding mode
rounding = 0 to round
rounding = 1 to truncate
Description

vfix8 changes the elements of real vector a from type float to type char (1 byte)
and stores the results in integer vector c. rounding specifies whether to round or
truncate.

for i=0 to n-1

if rounding=0, c[i] = short((a[i]+sign(a[i])*0.5))
else, c[i] = short(a[i])

173

Summary

C Usage

Arguments

Description

vfix16

vfix16 vector fix to short integer

void vfix16 (float *a, int ia, short *c, int ic, int n, int
roundi ng) ;

a real vector a

ia stride for vector a

c results in short integer vector ¢
ic stride for vector ¢

n element count of vectors
rounding rounding mode

rounding = 0 to round
rounding = 1 to truncate

vfix16 changes the elements of real vector a from type float to type short (2
bytes) and stores the results in integer vector c. rounding specifies whether to
round or truncate

for i=0 to n-1

if rounding=0, c[i] = short((a[i]+sign(a[i])*0.5))
else, c[i] = short(a[i])

174

vfix32

{xe”vfix32" }{xe “svs”}

Summary
vfix32 vector fix to long integer
C Usage
void vfix32 (float *a, int ia, long *c, int ic, int n, int
roundi ng) ;
Arguments
a real vector a
ia stride for vector a
c results in long integer vector ¢
ic stride for vector c
n element count of vectors
rounding rounding mode
rounding = 0 to round
rounding = 1 to truncate
Description

vfix16 changes the elements of real vector a from type float to type long (4
bytes) and stores the results in integer vector c. rounding specifies whether to
round or truncate

for i=0 to n-1

if rounding=0, c[i] = long((a[i]+sign(a[i])*0.5))
else, c[i] = long(a[i])

175

vflt

{xe”vflt”}{xe “svs”}

Summary

vflt vector float
C Usage

void vflt (int *a, int ia, float *c, int ic, int n);

Arguments

a integer vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vflt converts the elements of integer vector a from type integer to type float and
stores the results in real vector ¢

for i=0 to n-1
c[i] =float(a[i])

176

vflt8

{xe”vflt8"}{xe “svs”}

Summary

vflt8 vector float byte integers
C Usage

void vflt8 (char *a, int ia, float *c, int ic, int n);

Arguments

a signed char vector a

ia stride for vector a

c results in real vector c

ic stride for vector ¢

n element count of vectors
Description

vflt8 converts the elements of signed char vector a from type char to type float
and stores the results in real vector ¢

for i=0 to n-1
c[i] =float(a[i])

177

vflt16

{xe”vfild16” }{xe “svs”}

Summary

viltl6 vector float short integers
C Usage

void vfltl6 (short *a, int ia, float *c, int ic, int n);

Arguments

a short integer vector a

ia stride for vector a

c results in real vector c

ic stride for vector c

n element count of vectors
Description

vflt16 converts the elements of short integer vector a from type short to type
float and stores the results in real vector c

for i=0 to n-1
c[i] = float(a[i])

178

vflt32

{xe”vfl32" }{xe “svs”}

Summary

vflt32 vector float short integers
C Usage

void vflt32 (unsigned int *a, int ia, float *c, int ic, int n);

Arguments

a integer vector a

ia stride for vector a

c results in real vector c

ic stride for vector ¢

n element count of vectors
Description

vflt32 converts the elements of integer vector a from type unsigned int to type
float and stores the results in real vector c

for i=0 to n-1
c[i] = float(a[i])

179

vfltu8

{xe”vfltu8” }{xe “svs”}

Summary

viltu8 vector float unsigned char integers
C Usage

void vfltu8 (unsigned char *a, int ia, float *c, int ic, int n);

Arguments

a unsigned char vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector ¢

n element count of vectors
Description

vfltu8 converts the elements of unsigned char vector a from type unsigned char
to type float and stores the results in real vector ¢

for i=0 to n-1
c[i] = float(a[i])

180

vfltul6

{xe”vflut6” }{xe “svs”}

Summary

viltul6 vector float unsigned short integers
C Usage

void vfltul6 (unsigned short*a, int ia, float *c, int ic, int n);

Arguments

a short integer vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector ¢

n element count of vectors
Description

vfltul6 converts the elements of unsigned short integer vector a from type
unsigned short to type float and stores the results in real vector ¢

for i=0 to n-1
c[i] = float(a[i])

181

vfltu32

{xe”vfltu32”}{xe “svs”}

Summary

vfltu32 vector float unsigned short integers
C Usage

void vfltu32 (unsigned int *a, int ia, float *c, int ic, int n);

Arguments

a unsigned integer vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector ¢

n element count of vectors
Description

vfltu32 converts the elements of unsigned integer vector a from type unsigned
int to type float and stores the results in real vector ¢

for i=0 to n-1
c[i] = float(a[i])

182

virac

{xe”vfrac” {{xe “vfrac”}

Summary
vfrac vector truncate to fraction
C Usage
void vfrac (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vfrac extracts the fractional part of each element of real vector a and stores it in
the corresponding element of real vector c using the algorithm

for i=0 to n-1
c[i] = a[i] - float(int(a[i]))

183

vgathr

{xe”vgathr”}{xe “vgathr”}

Summary

vgathr vector gather
C Usage

void vgathr (float *a, int *b, int ib, float *c, int ic, int n);

Arguments

a real vector a of values

b real vector b of indices

ib stride for vector b

c result in real vector c

ic stride for vector ¢

n element count of vectors
Description

vgathr uses the elements of integer vector b as the indices (in the range 0 to n-1)
by which to fetch the elements of real vector a for storage into real vector c. No
check is made on the validity of the indices in vector b.

for i=0 to n-1

c[i] = a[b[i]]

184

vimag

{xe”vimag” }H{xe “vimag”}

Summary

vimag extract imaginaries of complex vector
C Usage

void vimag (float *a, int ia, float *c, int ic, int n);

Arguments

a complex vector a

ia stride for vector a expressed in floats

c results in real vector c

ic stride for vector ¢

n element count of vectors
Description

vimag forms a real vector ¢ from the imaginary parts of complex vector a

for i=0 to n-1
c[i] = img(ali])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

185

viim

{xe”vlim”}{xe “vlim”}

Summary
Viim vector limit
C Usage
void viim(float *a, int ia, float *b, float *c, float *d,
int id, int n);
Arguments
a real vector a
ia stride for vector a
b real scalar threshold
c real scalar replacement value
d results in real vector d
id stride for vector d
n element count of vectors
Description

vlim creates a real vector d with values of only real value c or -c depending on
whether the corresponding element of real vector a is less than the threshold
value b using the algorithm

for i=0 to n-1

if a[i] <b, d[i] = -c,
else, d[i] =c¢

186

{xe”vlog” H{xe “vlog”}

Summary

vlog
C Usage

void vlog (fl oat

Arguments

a

ia

C

ic

n
Description

viog

vector natural logarithm

*a, int ia, float *c, int ic, int n);

real vector a

stride for vector a
results in real vector c
stride for vector c
element count of vectors

vlog stores the natural logarithm of the elements of real vector a into real vector ¢

i=0 to n-1
cli]

for

= log(a[i])

187

vliog10

{xe”vlogl10” }H{xe “vliogl1l0”}

Summary

viog10 vector base 10 logarithm
C Usage

void vlogl0 (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vlog10 stores the base 10 logarithm of the elements of real vector a into real
vector ¢

for i=0 to n-1
c[i] = 1ogl0(a[i])

188

vma

{xe”vma” }{xe “vma”}

Summary
vma vector multiply and add
C Usage
void vma (float *a, int ia, float *b, int ib, float *c, int ic,
float *d, int id, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c real vector ¢
ic stride for vector ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

vma multiplies elements of real vectors a and b, adds that product to the

corresponding element of real vector ¢, and stores the result into real vector d
using the algorithm

for i=0 to n-1

dii] = (a[i] * b[i]) + c[i]

189

vmax

{xe”vmax” }{xe “vmax”}

Summary
vmax vector maximum of two vectors
C Usage
void vmax (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vmax select the maximum of corresponding elements of real vectors a and b and
stores the result in real vector ¢

for i=0 to n-1
c[i] = max(a[i], b[i])

190

vmaxmg

{xe”vmaxmg” }{xe “vmaxmg”}

Summary
vmaxmg vector maximum magnitude of two vectors
C Usage
void vmaxng (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vmaxmg select the maximum of the absolute values of corresponding elements
of real vectors a and b and stores the result in real vector c

for i=0 to n-1
c[i] = max(abs(a[i]), abs(b[i]))

191

vmin

{xe”vmin”}{xe “vmin”}

Summary
vmin vector minimum of two vectors
C Usage
void vmn (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vmin selects the minimum values of corresponding elements of real vectors a
and b and stores the result in real vector ¢

for i=0 to n-1
c[i] =mn(a[i], b[i])

192

vminmg

{xe”vminmg” }{xe “vminmg”}

Summary
vminmg vector minimum magnitude of two vectors
C Usage
void vmnng (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vminmg select the minimum of the absolute values of corresponding elements of
real vectors a and b and stores the result in real vector ¢

for i=0 to n-1
c[i] = min(abs(a[i]), abs(b[i]))

193

vmov

{xe”vmov” }{xe “vmov”}

Summary
vmov vector move

C Usage

void vrnov (float *a, int ia, float *c, int ic, int n);
Arguments

A real vector A

1A stride for vector A

C results in real vector C

IC stride for vector C

N element count of vectors
Description

vmov copies the elements of real vector a to real vector ¢

for i=0 to n-1

c[i] = a[i]

194

{xe”vmsa” }{xe “vmsa’}

Summary
vmsa

C Usage

void vimsa (fl oat
float *d, int id,
Arguments

ia

ib
id

Description

vmsa

vector multiply and scalar add

i nt fl oat i nt fl oat

n);

*a'
int

ia, *Db, ib, *c,

real vector a

stride for vector a

real vector b

stride for vector b

real scalar c

results in real vector d
stride for vector d
element count of vectors

vmsa multiplies elements of real vectors a and b, adds that product to real scalar
¢, and stores the result into real vector d using the algorithm

i=0 to n-1
dli]

for

= (ali]

* p[i]) + ¢

195

{xe”vmsb” }{xe “vmsb”}

Summary
vmsb

C Usage

void vimsb (fl oat
float *d, int id,

Arguments
ia
ib
ic

id

Description

vmsb

vector multiply and subtract

int ia, float i nt fl oat int ic,

n);

*a'
int

*b, ib, *c,

real vector a

stride for vector a

real vector b

stride for vector b

real vector ¢

stride for vector ¢
results in real vector d
stride for vector d
element count of vectors

vmsb multiplies elements of real vectors a and b, subtracts from that product the
corresponding element of real vector ¢, and stores the result into real vector d

using the algorithm

for i=0 to n-1

d[i]

= (ali]

* bli]) - c[il]

196

vmul

{xe”vmul” }H{xe “vmul”}

Summary
vmul vector multiply
C Usage
void vimul (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
A real vector a
ia stride for vector a
B real vector b
ib stride for vector b
C results in real vector c
ic stride for vector ¢
N element count of vectors
Description

vmul multiplies the corresponding elements of real vectors a and b and stores
the results into real vector ¢

for i=0 to n-1
c[i] = a[i] * b[i]

197

vnabs

{xe”vnabs”}{xe “vnabs”}

Summary

vhabs vector negative absolute value
C Usage

void vnabs (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vhabs stores the negative absolute values of the elements of real vector a into
real vector ¢

for i=0 to n-1
c[i] = -abs(a[i])

198

vneg

{xe”vneg” H{xe “vneqg”}

Summary
vnheg vector negate
C Usage
void vneg (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vneg stores the negative of the elements of real vector a into real vector ¢

for i=0 to n-1
c[i] = -a[i]

199

vor

{xe”vor” }{xe “vor”}

Summary

vor vector logical OR
C Usage

void vor (int *a, int ia, int *b, int ib, int *c, int ic, int n);

Arguments

a integer vector a

ia stride for vector a

b integer vector b

ib stride for vector b

c results in integer vector ¢

ic stride for vector ¢

n element count of vectors
Description

vor forms the bitwise logical OR of the corresponding 32-bit integer elements of
integer vectors a and b and stores the results into real vector ¢

for i=0 to n-1
c[i] =a[i] .OR b[i]

200

vpoly

{xe”vpoly” {xe “vpoly”}

Summary

C Usage

Arguments

Description

vpoly vector polynomial evaluation

float a[], b[], c[1;

int ia, ib, ic, n, m

void vpoly (float *a, int ia, float *b, int ib, float *c, int ic,
int n, int order);

a real vector a containing polynomial coefficients
ia stride for vector a

b real vector b containing independent variable
ib stride for vector b

c results in real vector ¢

ic stride for vector ¢

n element count of vectors

order integer order of polynomial

vpoly evaluates the polynomial whose coefficients are provided in real vector a
for each element of real vector b used as the independent variable and stores the
results into real vector c. The coefficients are arranged in descending order in
vector a. Argument order specifies the order of the polynomial stored in vector a
and must be greater than or equal to 0. The evaluation algorithm is:

for i=0 to n-1

for j=0 to order
c[i] = sun(a[j] * b[i]**(order-j))

201

vramp

{xe”vramp” }{xe “vramp”}

Summary

vramp vector fill with ramp
C Usage

void vranp (float *a, float *b, float *c, int ic, int n);

Arguments

a real scalar a, the initial ramp value

b real scalar b, the ramp increment

c results in real vector ¢

ic stride for vector ¢

n element count of vectors
Description

vramp stores the ramp specified by real scalars a and b into real vector ¢ using
the algorithm

for i=0 to n-1
c[i] =a+ (i * b)

202

vrcip

{xe”vrcip” {xe “ac”}

Summary
vrcip vector reciprocal

C Usage

void vrcip (float *a, int ia, float *c, int ic, int n);
Arguments

A complex vector A

1A stride for vector A

C results in real vector C

IC stride for vector C

N element count of vectors
Description

vrcip computes the reciprocal of real vector a putting the result in real vector c.

for i=0 to n-1
c[i] =1.0/ a[i]

203

vreal

{xe”vreal” }{xe “vreal”}

Summary

Vreal extract reals of complex vector
C Usage

void vreal (float *a, int ia, float *c, int ic, int n);

Arguments

a complex vector a

ia stride for vector a expressed in floats

c results in real vector c

ic stride for vector c

n element count of vectors
Description

vreal copies the real parts of complex vector a to real vector ¢

for i=0 to n-1
c[i] =real(a[i])

Note that the stride argument(s) to complex vectors are expressed in floats or
reals. To process a contiguous complex array, stride should be 2. To skip every
other complex element, stride should be 4.

204

vsadd

{xe”vsadd” }{xe “vsadd”}

Summary

Vsadd vector scalar add
C Usage

void vsadd (float *a, int ia, float *b, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

b real scalar b

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vsadd adds scalar b to each element of real vector a and stores the results into
real vector ¢

for i=0 to n-1
c[i] = a[i] + b

205

{xe”vsbm” }{xe “vsbm”}

Summary
vsbm

C Usage

voi d vsbm (fl oat
float *d, int id,

Arguments
ia
ib
ic

id

Description

vsbhm

vector subtract and multiply

i nt fl oat i nt fl oat i nt

n);

*a'
int

ia, *b, ib, *c, ic,

real vector a

stride for vector a

real vector b

stride for vector b

real vector ¢

stride for vector ¢

results in real vector d
stride for vector d
element count of vectors

vsbm subtracts corresponding elements of real vector b from those of real vector
a, multiplies that difference by the corresponding element of real vector ¢, and

stores the result into

i=0 to n-1
dli]

for

= (ali]

real vector d using the algorithm

bli]) * c[i])

206

vscal

{xe”vscal”}{xe “vscal”}

Summary
vscal vector scale and fix
C Usage
void vscal (float *a, int ia, float *bh, int *c, int ic,
int n, int nbits);
Arguments
a real vector a
ia stride for vector a
b real scalar b
c results in integer vector ¢
ic stride for vector ¢
n element count of vectors
nbits number of bits
Description

vscal scales the elements of real vector a by a power of 2, fixes the scaled
values truncating towards 0.0, and stores the results into integer vector c. The
power of 2 is chosen so that real scalar b falls within one-quarter to one-half the
dynamic range specified by integer bit width nbits

k = nbits - int (logo(b))
for i=0 to n-1
clil = fix (a[i]*(2K))

207

vscatr

{xe”vscatr” }{xe “vscatr”}

Summary

vscatr vector scatter
C Usage

void vscatr (float *a, int ia, int *b, int ib, float *c, int n);

Arguments

A real vector a of values

ia stride for vector a

B integer vector b of indices

ib stride for vector b

C results in real vector ¢

N element count of vectors
Description

vscatr fetches elements from real vector a and stores those elements into vector
c using indices from integer vector b to specify locations in vector ¢ in which to
store

for i=0 to n-1

c[bli]] = a[i]

208

vsdiv

{xe”vsdiv” }{xe “vsdiv"}

Summary

vsdiv vector scalar divide
C Usage

void vsdiv (float *a, int ia, float *b, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

b real scalar b

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vsdiv divides the elements of real vector a by scalar b and stores the result into
real vector ¢

for i=0 to n-1
c[i] =a[i] / b

209

vsin

{xe”vsin”}{xe “vsin"}

Summary

vsin vector sine
C Usage

void vsin (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector ¢

n element count of vectors
Description

vsin stores the sine of the elements of real vector a into to real vector c:

for i=0 to n-1
c[i] =sin(a[i])

210

{xe”vsma” }{xe “vsma’}

Summary
Vsma

C Usage

void vsma (fl oat
float *d, int id,

Arguments

Description

vsSma

vector scalar multiply and add

int ia, float

n);

*a'
int

*b, float *c, int ic,

real vector a

stride for vector a

real vector b

real vector ¢

stride for vector ¢
results in real vector d
stride for vector d
element count of vectors

vsma multiplies elements of real vector a by scalar b, adds the corresponding
element of real vector c, and stores the result into real vector d using the

algorithm
for i=0 to n-1
dii] = (a[i]

* p) + c[i]

211

vsmb

{xe”vsmb” }{xe “vsmb”}

Summary
vsma vector scalar multiply and subtract
C Usage
void vsnb (float *a, int ia, float *b, float *c, int ic,
float *d, int id, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
c real vector ¢
ic stride for vector ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

vsmb multiplies elements of real vector a by scalar b, subtracts the

corresponding element of real vector ¢, and stores the result into real vector d
using the algorithm

for i=0 to n-1

dii] = (a[i] * b) - c[i]

212

vsmsa

{xe”vsmsa” }{xe “vsmsa”}

Summary
vsmsa vector scalar multiply and scalar add
C Usage
void vsnsa (float *a, int ia, float *b, float *c, float *d, int
id,
int n);
Arguments
a real vector a
ia stride for vector a
b real scalar b
c real scalar ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

vsmsa multiplies elements of real vector a by scalar b, adds real scalar ¢, and
stores the result into real vector d using the algorithm

for i=0 to n-1
dl[i] = (af[i] * b) + ¢

213

vsmsb

{xe”vsmab” }{xe “vsmsb”}

Summary
Vsmsb vector scalar multiply and subtract
C Usage
void vsnsb (float *a, int ia, float *b, float *c, int ic,
float *d, int id, int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c real vector ¢
ic stride for vector ¢
d results in real vector d
id stride for vector d
n element count of vectors
Description

vsmsb multiplies elements of real vector a by scalar b, subtracts the

corresponding element of real vector ¢, and stores the result into real vector d
using the algorithm

for i=0 to n-1

dii] = (a[i] * b) - c[i]

214

vsmul

{xe”vsmul” }{xe “vsmul”}

Summary

vsmul vector scalar multiply
C Usage

void vsmul (float *a, int ia, float *b, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

b real scalar b

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vsmul multiplies the elements of real vector a by scalar b and stores the result
into real vector ¢

for i=0 to n-1
c[i] = a[i] * b

215

Vs(Q

{xe”"vsq” }{xe “vsq”}

Summary

vsq vector square
C Usage

void vsq (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vs(q stores the square of each element of real vector a into to real vector ¢

for i=0 to n-1
c[i] = a[i] * a[i]

216

{xe”vsqrt” }{xe “vsqrt”}

Summary

vsqrt
C Usage

void vsqrt (float

Arguments

a

ia

C

ic

n
Description

vsqrt

vector square root

*a, int ia, float *c, int ic, int

n);

real vector a

stride for vector a
results in real vector ¢
stride for vector ¢
element count of vectors

vsqrt stores the square root of each element of real vector a into to real vector ¢

i=0 to n-1
c[i] =

for

sqrt(af[i])

217

VSsq

{xe”vssq” {xe “vssq”}

Summary

vss(q vector signed square
C Usage

void vssq (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vssq multiplies each element of real vector a by the absolute value of the
element and stores the result into to real vector ¢

for i=0 to n-1
c[i] = a[i] * abs(a[i])

218

vsub

{xe”vsub”}{xe “vsub”}

Summary
vsub vector subtract
C Usage
void vsub (float *a, int ia, float *b, int ib, float *c, int ic,
int n);
Arguments
a real vector a
ia stride for vector a
b real vector b
ib stride for vector b
c results in real vector c
ic stride for vector ¢
n element count of vectors
Description

vsub subtracts the corresponding elements of real vector b from those of real
vector a and stores the result in real vector c

for i=0 to n-1

c[i] = a[i] - b[i]

219

vswap

{xe”vfrac” {xe “vswap”}

Summary

vswap vector swap
C Usage

void vswap (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vswap swaps the elements of real vector a with the corresponding elements of
real vector ¢

for i=0 to n-1
temp = c[i], c[i] = a[i], a[i] = tenp

220

vtan

{xe”vtan”}{xe “vtan”}

Summary

vtan vector tangent
C Usage

void vtan (float *a, int ia, float *c, int ic, int n);

Arguments

a real vector a in radians

ia stride for vector a

c results in real vector ¢

ic stride for vector c

n element count of vectors
Description

vtan computes the tangent of each elements of real vector a (in radians) and
stores the result into real vector ¢

for i=0 to n-1
c[i] =tan(a[i])

221

vthresh

{xe”vthresh” }{xe “vthresh”}

Summary
Vthresh vector threshold
Vthr alias for vector threshold
C Usage
void vthresh (float *a, int ia, float *b, float *c, int ic, int
nj;
Arguments
a real vector a
ia stride for vector a
b real scalar b, lower threshold
c results in real vector ¢
ic stride for vector c
n element count of vectors
Description

vthresh limits the value of the elements of real vector a to be greater than or
equal to the threshold in scalar b and stores the result into real vector c.

for i=0 to n-1
if a[i] <b, c[i] =D
else, c[i] = a[i]

vthr is an allowed alias for vthresh.

222

Xgradient

Xgradient X gradient operator on float data
C Usage
#i ncl ude <fastlib. h>
void Xgradient (float *a, int ia, float *c, int ic, int nrow, int
ncol) ;
Description

The Xgradient function convolves a row gradient operator (listed below) with the
input image located at a. The X gradient image is placed at c.

fl oat xgrad_h1[9] = {

0.0, 0.0, 0.0,
0.0, 1.0, -1.0,
0.0 0.0 0.0

223

Xor8

Xor8 Logical XOR 8-bit images

C Usage

#i ncl ude <fastlib. h>
void Xor8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c, int ic, int nr, int nc);

Description

The Xor8 function performs the exclusive-or function between 8-bit images a and
b, placing the result in image c. The following C code fragment describes the
function:

void Xor8 (unsigned char *a, int ia, unsigned char *b, int ib,
unsi gned char *c, int ic, int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
clic*i+j] = a[ia*i+] ™ b[ib*i+j];
}

224

Xorl6

Xorl6 Logical XOR 16 bit images

C Usage

#i ncl ude <fastlib. h>
void Xor16 (unsigned short *a, int ia, unsigned short *b, int ib,
unsi gned short *c, int ic, int nr, int nc);

Description

The Xor16 function performs the exclusive-or function between 16 bit images a
and b, placing the result in image c. The following C code fragment describes
the function:

voi d Xor16 (unsigned short *a, int ia, unsigned short *bh, int ib,
unsi gned short *c, int ic, int nr, int nc)

L
int i;
int j;
for (i =0; i <nr; i ++4)
for (j =0; j <nc; j +4)
clic*i+j] = a[ia*i+] ™ b[ib*i+j];
}

225

Ygradient

Ygradient Y gradient operator on float data
C Usage
#i ncl ude <fastlib. h>
void Ygradient(float *a, int ia, float *c, int ic, int nrow int
ncol) ;
Description

The Ygradient function convolves a column gradient operator (listed below) with
the input image located at a. The Y gradient image is placed at c.

fl oat ygrad_h1[9] = {

0.0, -1.0, 0.0,
0.0, 1.0, 0.0,
0.0 0.0 0.0

226

Zoom

Zoom Zoom float image

C Usage

#i ncl ude <fastlib. h>
void Zoom (float *a, int ia, float *c, int ic, int nra, int nca,
int nrc, int ncc);

Description

The Zoom function expands or shrinks float image a of size nra by nca, to float
image c of size nrc by ncc using bi-linear interpolation.

227

Zooms8

Zoom§8 Zoom 8-bit image
C Usage
#i ncl ude <fastlib. h>
voi d ZoonB (unsigned char *a, int ia, unsigned char *c, int ic,
int nra, int nca,
int nrc, int ncc);
Description

The Zoom8 function expands or shrinks 8-bit image a of size nra by nca, to 8-bit
image c of size nrc by ncc using bi-linear interpolation.

228

Zoomlé6

Zoom16 Zoom 16 bit image
C Usage
#i ncl ude <fastlib. h>
voi d Zoonl6 (unsigned short *a, int ia, unsigned short *c, int ic,
int nra, int nca, int nrc, int ncc);
Description

The Zoom8 function expands or shrinks 16 bit image a of size nra by nca, to 16
bit image c of size nrc by ncc using bi-linear interpolation.

229

. TROUBLESHOOTING

There are several things you can try before you call Alacron Technical Support for help.

Make sure the computer is plugged in. Make sure the power source is on.

Go back over the hardware installation to make sure you didn’t miss a page or a
section.

Go back over the software installation to make sure you have installed all necessary
software.

Run the Installation User Test to verify correct installation of both hardware and
software.

Run the user-diagnostics test for your main board to make sure it's working
properly.

Insert the Alacron CD-ROM and check the various Release Notes to see if there is
any information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\alacron\alinfo

Compile and run the example programs found in the directory:
\usr\alacron\src\examples

Find the appropriate section of the Programmer’s Guide & Reference or the Library
User’s Manual for the particular library and problem you are experiencing. Go back
over the steps in the guide.

Check the programming examples supplied with the runtime software to see if you
are using the software according to the examples.

Review the return status from functions and any input arguments.

Simplify the program as much as possible until you can isolate the problem. Turning
off any operations not directly related may help isolate the problem.

Finally, first save your original work. Then remove any extraneous code that
doesn't directly contribute to the problem or failure.

230

IV. ALACRON TECHNICAL SUPPORT

Alacron offers technical support to any licensed user during the normal business hours of 9 a.m.
to 5 p.m. EST. We offer assistance on all aspects of processor board and PMC installation and
operation.

A. Contacting Technical Support

To speak with a Technical Support Representative on the telephone, call the number below
and ask for Technical Support:

Telephone: 603-891-2750

If you would rather FAX a written description of the problem, make sure you address the FAX
to Technical Support and send it to:

Fax: 603-891-2745

You can email a description of the problem to support@alacron.com

Before you contact technical support have the following information ready:
Serial numbers and hardware revision numbers of all of your boards. This
information is written on the invoice that was shipped with your products.

Also, each board has its serial number and revision number written on either in ink
or in bar-code form.

The version of the ALRT, ALFAST, or FASTLIB software that you are using.
You can find this information in a file in the directory: \usr\alfast\alinfo
The type and version of the host operating system, i.e., Windows 98.

Note the types and numbers of all your software revisions, daughter card libraries,
the application library and the compiler

The piece of code that exhibits the problem, if applicable. If you email Alacron the
piece of code, our Technical-Support team can try to reproduce the error. Itis
necessary, though, for all the information listed above to be included, so Technical
Support can duplicate your hardware and system environment.

231

B. Returning Products for Repair or Replacements

Ouir first concern is that you be pleased with your Alacron products.

If, after trying everything you can do yourself, and after contacting Alacron Technical Support,
you feel your hardware or software is not functioning properly, you can return the product to
Alacron for service or replacement. Service or replacement may be covered by your
warranty, depending upon your warranty.

The first step is to call Alacron and request a “Return Materials Authorization” (RMA) number.

This is the number assigned both to your returning product and to all records of your
communications with Technical Support. When an Alacron technician receives your returned
hardware or software he will match its RMA number to the on-file information you have given
us, so he can solve the problem you've cited.

When calling for an RMA number, please have the following information ready:

Serial numbers and descriptions of product(s) being shipped back

A listing including revision numbers for all software, libraries, applications, daughter
cards, etc.

A clear and detailed description of the problem and when it occurs
Exact code that will cause the failure

A description of any environmental condition that can cause the problem

All of this information will be logged into the RMA report so it's there for the technician when
your product arrives at Alacron.

Put boards inside their anti-static protective bags. Then pack the product(s) securely in the
original shipping materials, if possible, and ship to:

Alacron Inc.
71 Spit Brook Road, Suite 200
Nashua, NH 03060
USA

Clearly mark the outside of your package:
Attention RMA #80XXX

Remember to include your return address and the name and number of the person who
should be contacted if we have questions.

232

C. Reporting Bugs

We at Alacron are continually improving our products to ensure the success of your projects.
In addition to ongoing improvements, every Alacron product is put through extensive and
varied testing. Even so, occasionally situations can come up in the fields that were not
encountered during our testing at Alacron.

If you encounter a software or hardware problem or anomaly, please contact us immediately
for assistance. If a fix is not available right away, often we can devise a work-around that
allows you to move forward with your project while we continue to work on the problem you've
encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help
if you create a stand-alone code module that is isolated from your application and yet clearly
demonstrates the anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@alacron.com

We will compile and run the module to track down the anomaly you've found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the
code to a disk, describe the error, and mail the disk to Technical Support at the Alacron
address below.

If the code is small enough, you can also:
FAX the code module to us at 603-891-2745

If you are faxing the code, write everything large and legibly and remember to include your
description of the error.

When you are describing a software problem, include revision numbers of all associated
software.

For documentation errors, photocopy the passages in question, mark on the page the number
and title of the manual, and either FAX or mail the photocopy to Alacron.

Remember to include the name and telephone number of the person we should contact if we
have questions.
Alacron Inc.
71 Spit Brook Road, Suite 200
Nashua, NH 03060
USA

Telephone: 603-891-2750
FAX: 603-891-2745

Web site:
http://www.alacron.com/

Electronic Mail:
sales@alacron.com
support@alacron.com

233

