
 1

FASTCAMERA CCD USER AND
REFERENCE MANUAL

FVM-00406

FASTSERIES

 2

COPYRIGHT NOTICE

Copyright © 2010 by FastVision LLC.

All rights reserved. This document, in whole or in part, may not be copied, photocopied, reproduced,
translated, or reduced to any other electronic medium or machine-readable form without the express
written consent of FastVision LLC.

FastVision makes no warranty for the use of its products, assumes no responsibility for any error, which
may appear in this document, and makes no commitment to update the information contained herein.
FastVision LLC. retains the right to make changes to this manual at any time without notice.

 Document Name: FastCamera CCD User and Reference Manual

 Document Number: FVM-00406

 Revision History: 1.0 August 2010

Trademarks:
FastVision® is a registered trademark of FastVision LLC.
Channel Link™ is a trademark of National Semiconductor
Virtex™ is a trademark of Xilinx Inc.
Windows™, Windows 95™, Windows 98™, Windows 2000™, Windows NT™, and Windows
XP™ are trademarks of Microsoft

All trademarks are the property of their respective holders.

FastVision LLC.
131 Daniel Webster Highway, #529

Nashua, NH 03060
USA

Telephone: 603-891-4317

Fax: 603-891-1881

Web Site:
http://www.Fast-Vision.com/

Email:

sales@Fast-Vision.com, or support@Fast-Vision.com

 3

TABLE OF CONTENTS

TABLE OF CONTENTS..3

PURPOSE...5

CAMERA BOARDS BLOCK DIAGRAMS...5

SENSORS ...5

BOARD INTERCONNECTIONS...5
Power Bus..5
Serial Channel ...6
Video Channel ...6

SENSOR BOARD ...7
Block Diagram...7
Sensor Board FPGA ..8

CPU BOARD...9
Block Diagram...9
CPU Board FPGA ...10

I/O BOARD..11
Block Diagram...11
I/O Board FPGA..12

INTERFACE CONNECTORS ...12
Power Connector ...12
Power Requirements..12
Camera Link Connector...13
GigE connector ..13
JTAG Connectors ..14

CAMERA OPTIONS ...14

GIGE VISION INTERFACE...14
Boot ...15
Discovery...15
Command and Control Connections..15
Streaming Connections..15
Events ..15
Triggering ..15

CAMERA LINK INTERFACE..15
Channel Link ...15
Serial Link ...15
CC1 to CC4 inputs...15

ANALOG INTERFACE ...15

SPECIAL INTERFACES...16
Serial Interface...16
Motor Controller Output..16
Isolated input and outputs..16

SOFTWARE AND FIRMWARE..16

FCCM PROGRAM ..16

COMMAND AND CONTROL CELLS...18

SENSOR BOARD ...20

CPU BOARD...24
XIO Registers ..24

 4

CPU Board Process Cell API ..26

FC XXX CPU FIRMWARE..26

VIDEO-BUS AND MESSAGE-BUS..26
CPU video in/out and message handling ...26

FgpiSrvHandler ...26
FgpoSrvHandler ..27
rtcell routing of video ..27
example of vi + vo + routing of video-cells ..27
MsgSrvHandler..27

Read, write and read-response...28
I/O-board opto-electronics change of state..28
Write-requests..28
Read-requests...28
Read-response-request...28
Uart receive chars ..28
Uart transmit chars...29

Sending cell – messages ..29
command_sensreg_api...30
command_ioreg_api ..30

API – FUNCTIONS..30
GetRoi_api...30
SetRoi_api ...30
GetFrameControl_api ..31
CaptureOneFrame_api...31
CaptureContinousFrame_api ...31
GetFpgaRevID_api..32
SetShowUartMode_api..32
setupCpuStorageReadOut_api...32
MsgSrvStart_api ..32

I/O BOARD FIRMWARE...32

SIZE AND COOLING..34

TROUBLESHOOTING..35

FASTVISION TECHNICAL SUPPORT ..36

CONTACTING TECHNICAL SUPPORT..36

 5

This manual describes the architecture and use of the ‘Kodak Fast Camera’ camera family.

This document applies to the FC105, FC205, FC215, and FC405.

P
ow

er B
us +5V

,+15V
, +3.3V

SENSORS
FCxxx camera is designed to be compatible with the 1, 2, 4, and 8 Mpixel Kodak Sensors.

BOARD INTERCONNECTIONS

Power Bus
Running up to stack of boards is the power bus. The power bus is driven by the I/O board at the bottom of
the stack. The power bus uses an eleven pin SIP connector with the male pins being soldered into the I/O
board, while the other boards have pass through female connectors allowing the male pins to extend up
through the whole stack of boards. This connection method limits the number of connector pin contacts
between the power supply and the boards to one contact. The 11 pins in the power bus are:

Pin Function

1 +15 Volts

2 +/-15 Volt
Return

3 -15 Volts

PURPOSE

CAMERA BOARDS BLOCK DIAGRAMS

 6

4 Ground

5 Ground

6 +5 Volts

7 +5 Volts

8 Ground

9 Ground

10 +3.3 Volts

11 +3.3 Volts

The I/O board has a power converter which provides the +3.3 volts to the bus from the +5 volt from the
power brick. +15 Volts currently comes from the external power brick . .

Serial Channel
There is a bidirectional serial channel which passes through each board in the stack. The sensor board
and the I/O board have receivers and transmitters while the inner CPU boards contain a receiver and
transmitter for each direction. The serial channel operates at 320 Mb/sec and is re-timed at each board.
The serial channel is implemented with a source synchronous clock, so the transmitters provide the clock
to the receivers on the next board, above or below. A total of four signals are used, clock and data, for
each direction. The serial cannel implements a 16 bit synchronous protocol using the value 0xA55A as an
idle SYNC word. The serial channel sends ‘Cells’ which are from 2 to 17 words (16 bits) long. See the
section below for the details of this protocol.

Video Channel
The video channel is a sixteen bit parallel data channel. This channel is implemented as 16 single ended
data bits in 8 pairs (P0 to P7 in the figure) with a clock frequency of 160 MHz. The video channel is
unidirectional and is sourced at the sensor board. Each board in the stack receives and retimes the video
and retransmits it to the next board in the stack. The I/O board at the bottom of the stack receives the
video and converts it to the output type implemented for the camera (GigE, Camera Link, or Analog). The
video channel operates at 160 MHz single clock per data. This provides bandwidth for the four 16 bit pixel
channels (taps) at 40 MHz each.

 7

SENSOR BOARD

Block Diagram

AD5621 Vsub

SPI

VT,VB RG,HSA HL,HR

AD9978
AFE 2

AD9978
AFE 1

Tap D

Tap C

Tap B

Tap A

SPI SPID[3:0]
320 MHz

D[3:0]
320 MHz

Vert
Driver Driver Horz

Driver

VT,VB RG,HSA HL,HR

Pair
[7:0]

CLK
Down

Serial
Down

CLK
Up

Serial
Up

FPGA
FLASH

SPI

XILINX
JTAG

SPI

DDR3 Memory 64Mx16

16 bits

The sensor board contains the sensor drive electronics and is the source of the video channel. The
sensor board performs the following steps:

1. The FPGA decides based on the trigger mode and exposure how to operate the sensor.
2. The FPGA generates the driving clocks which operate the sensor in the selected mode for

example four tap mode.
3. The sensor detects the light hitting its pixels and provides an analog signal to the Analog front

end chips (AFE1 and AFE2).
4. The AFE chips convert the analog signal from the sensor to 14 bit digital values which are

representative of the light hitting the sensor.
5. The FPGA re-orders the taps coming from the sensor as it writes the pixels into a frame buffer, to

create a raster ordered array of pixels in the buffer memory.
6. When the frame is complete, the FPGA swaps buffers and begins reading out the pixels in raster

order from the frame buffer just completed.
7. The FPGA does dark and bright field correction on the pixels using a table stored in the buffer

memory.
8. The corrected pixels are sent in ‘Cells’ (small packets) down the video channel to the next board

in the stack.

The sensor board is essentially ‘the camera’ part of the FC205 camera. If the camera is built with a
CPU board, it is a ‘smart’ camera. The I/O board provides protocol conversion from the parallel
format of the video channel, to GigE, Camera Link, and Analog.

 8

The flash on the FPGA is 128 Mbits. It contains the bit stream for booting the FPGA, a script for
initializing the sensor board, and an array of correction coefficients for dark and bright field correction
of the sensor image. The sensor can be operated in three modes, one tap, two taps and four tap
modes. The taps read out from the corners of the sensor.

In one tap mode the sensor is read out in raster order from bottom to top (correcting for the Lens
inversion). In two tap mode the sensor can be split into two pieces. One split is into a left and right
half of the sensor; the other split is top and bottom half of the sensor. In the left and right split, the
sensor is read out from the bottom on the left and the right corners. The right half is read out reversed
left to right, which the FPGA corrects by writing the values to the memory buffer in reverse address
order. In the top and bottom readout mode, the top part is read out last line first, so the FPGA writes
the lines in reverse order to the buffer, building the image in the buffer memory in raster order.

Finally in four tap mode the sensor is read out from the four corners of the image array. The bottom
left reads out in order, the bottom right reads the lines reversed end to end, the top left reads out with
the lines in reverse order top to bottom, and the top right tap reads out the lines reversed end to end,
and the last line first.

The FPGA corrects the reversals while writing the pixels to the memory buffer. When the buffer swap
occurs, the FPGA reads out the in order image and applies the correction factors. The 14 bit pixels
have 14 bit values subtracted from them to do the dark field correction. If the resulting pixel value
would be negative it is set to zero. Next the dark field corrected pixels are multiplied by a 14 bit gain
coefficient, producing a 28 bit result. The 28 bits are shifted right by a programmable amount. If the
upper 12 bits of the shifted result are non-zero then the pixel value is set to all ones. The lower 16
bits are the pixel value sent by the sensor board down the stack on the video channel. By selecting
the amount of shift performed the binary point of the gain coefficient is positioned. In the machine
vision community the dark field correction is sometimes called the PSNU or DSNU which are
acronyms for Photo-receptor Static Non-Uniformity or Dark Signal Non-Uniformity. The gain
correction is sometimes called the PRNU which stands for Photo-receptor Response Non-Uniformity.

Sensor Board FPGA

Command and Status
Registers

Command Cell
Reciever Status Cell Transmiter

Command and
Control Channel

SERDES

AD5621 Logic AFE SPI Interface
(Write Only)

SPI Flash Interface
(R/W)

Drainer

Video Channel
Serializer

MIG Memory
Controller Filler

AFE Data
Deserializer

AFE ChipsAD55621 Chip FPGA SPI Flash

DDR3 Memory

Video ChannelCommand and
Control Channel

Sensor Timing
Generator

Sensor Drivers

Sensor

The sensor FPGA block diagram is shown above.

 9

CPU BOARD

Block Diagram

A block diagram of the CPU board is shown above. The CPU board is designed to process video from the
sensor board (or any board above it in the stack). The CPU board is used in ‘smart’ camera applications.
The CPU can process video, and control all the features supported by the camera, which include sending
video to the output, toggle outputs, monitor inputs, sends data to the serial interface or to the GigE
interface. The CPU boots from an EEPROM via I2C. The boot loads and executes a program from the
64MB NOR flash. The NOR Flash can be read or written by the processor so that parameter and result
data can survive power failures. The CPU can receive video from the stack above it, modify the video and
send the modified video down to the next board in the stack.

 10

CPU Board FPGA

X
IO

 B
U

S

A block diagram of the CPU FPGA is shown above.

The video interface can operate in three modes.

• The first mode is the video can completely bypass the CPU card without going to the CPU. This
is the default mode which is used during booting of the CPU.

• The second mode is the video can be sent to the CPU and at the same time forwarded to the
next board in the stack. This mode is used when the CPU is processing the video at the same
time it is being output to the board below.

• The third mode the CPU receives the video from the board above, and provides video to the
board below. This mode is used when the CPU must modify the video in some way.

The serial channel operates by passing cells up or down the stack which are not targeted for the CPU
board FPGA or the CPU. The destination of the cell determines which direction it is routed. Cells that
target the FPGA on the CPU board read and write registers in the FPGA. Cells that target the CPU are
placed in an input FIFO and can be read by the CPU. In turn the CPU can send cells which can target
any of the other boards in the stack. The capability of the CPU to send and receive arbitrary cells gives it
control of all the registers in the camera.

 11

I/O BOARD

Block Diagram

GigE VisionAnalog VideoCamera Link

Pair
[7:0]

CLK
Down

Side Band
Down

CLK
Up

Side Band
Up

FPGA
FLASH

SPI

XILINX
JTAG

SPI

DDR3 Memory 64Mx16

16 bits

Isolated
Outputs

Isolated
Inputs

Motor
Controller

Chanel
Link

GigE
PHYADV7127Serial CC[4:1]

EEPROM

I2C

8 Bit 8 Bit

The I/O board provides interfaces to the world outside the camera. Several interfaces are provided, which
can be controlled by the CPU board if it is present, or in dumb camera applications the interfaces are
configured to respond as requested by the customer, for example the camera link interface receives the
video from the sensor board when a dumb camera link camera is required. The motor controller contains
3 DC motor controllers which can be used to drive small DC motors. The board uses National
Semiconductor LM570 motor controllers. There are 6 optically isolated I/O pins can all be configured as
outputs. Four of the isolated I/Os can be configured as inputs. The isolated I/O pins use PS2801-1 opto-
isolators. The outputs can switch a maximum of 50 ma, and can tolerate up to 80 volts (when off). The
outputs provide a 47 ohm resistor and a protection diode in series with the opto-isolators transistor. The
optically isolated inputs can tolerate up to 75 volts, and are current limited to 20ma. The input on
threshold is 5 volts. The input off threshold is below 1 volt.

The Camera Link interface provides a base camera link configuration. The serial port defaults to 9600
baud and can be programmed to higher baud rates (up to 115,200 baud). The CC1 signal is configured
as a trigger input on the dumb camera. On the smart camera they can be configured as inputs or outputs,
using LVDS or RS485 style drivers and receivers (order option). The ADV7127 is a 10 bit DAC which can
be used to generate a one volt analog video output which is RS343 sync on green compatible. The
ADV7127 can be clocked at up to 240 MHz. The GigE interface uses a Marvel 88E1111 phy. The FPGA
can be ordered with GigE vision compatible firmware allowing the camera to interoperate with other GigE
vision cameras, or it can be used in a smart camera as a gigabit Ethernet interface by the CPU.

 12

I/O Board FPGA

The diagram above shows the I/O board FPGA Firmware.

INTERFACE CONNECTORS

Power Connector
The power connector is a Hirose 12 pin cylindrical connector HR10A-10R-12PB. The pin out of the
connector is application dependent and is shown in the table below.

Pin Option 1 Option 2 Option 3

1 Ground Ground Ground

2 +5 Volts In +5 Volts In +5 Volts Input Power

3 -15 Volts In GPIO to Sensor -15 Volts (May be changing to optional)

4 +15 Volts In +15 Volts In +15 Volts (May be changing to optional)

5 Motor 3 negative +/-15V Ground Ground

6 Motor 1 positive CC1 positive No Connection

7 Motor 1 negative CC1 negative No Connection

8 Motor 3 positive Ground Ground

9 Motor 2 positive CC2 Positive No Connection

10 Ground Ground Ground

11 +5 Volts In +5 Volts In +5 Volts Input Power

12 Motor 2 negative CC2 negative No Connection

Power Requirements
+5 Volts at 3 amps max.
+15 Volts at 100 ma max.

 13

Typical power dissipation for the CPU version is 14 watts.

Camera Link Connector
The camera can be built with a SDR26 connector which can be used to provide a base Camera Link
interface, or it can be used to provide general purpose I/O. The optically Isolated I/O is optionally
provided on this connector. The pin out of this connector is:

Pin Signal Optional Optional Signal Pin

1 Ground Ground Ground Ground 14

2 Tx Out 0
Negative

Optical Out 0
Positive

Optical Out 0
Negative

Tx Out 0
Positive

15

3 Tx Out 1
Negative

Optical Out 1
Positive

Optical Out 1
Negative

Tx Out 1
Positive

16

4 Tx Out 2
Negative

Not used Not used Tx Out 2
Positive

17

5 Tx Clock
Negative

Not used Not used Tx Clock
Positive

18

6 Tx Out 3
Negative

Not used Not used Tx Out 3
Positive

19

7 Sertc Positive RS485 Rx Positive RS485 Rx
Negative

Sertc Negative 20

8 Sertfg Negative RS485 TxNegative RS485 Tx
Negative

Sertfg Positive 21

9 CC1 Negative Optical In 0
Negative

Optical In 0
Positive

CC1 Positive 22

10 CC2 Positive Optical In 1
Positive

Optical In 1
Negative

CC2 Negative 23

11 CC3 Negative Optical In 2
Negative

Optical In 2
Positive

CC3 Positive 24

12 CC4 Positive Optical In 3
Positive

Optical In 3
Negative

CC4 Negative 25

13 Ground Ground Ground Ground 26

The optical isolated inputs can be configured as additional outputs if required. Be aware that the positive
and negative connections are as indicated for historical reasons relating to the history of the Camera Link
interface. Be absolutely sure how your camera is configured before connecting to this connector. This
connector can be configured in many ways one pin pair at a time.

GigE connector
The GigE connector is a standard RJ45 connector for use with UTP CAT5E or CAT6 cable. Its pin out
follows the Ethernet standards and is given here for reference.

 14

Pin Signal

1 A+

2 A-

3 B+

4 C+

5 C-

6 B-

7 D+

8 D-

JTAG Connectors
Inside the camera are JTAG connectors for connection to Xilinx and CPU JTAG controllers / cables.
The JTAG connectors use two small connectors.The pin out of the JTAG connects is board dependent
but follows the following table generally:

Pin FPGA Signal CPU Signal

Ja-1 Ground Ground

Ja-2 TDO TDO

Ja-3 TMS TDI

Ja-4 NC RESET~

Jb-1 Ground Ground

Jb-2 TCK TCK

Jb-3 TDI TMS

Jb-4 +3.3 Volts +3.3 Volts

The standard camera does not provide access to these connectors. Please contact the factory should
you wish access to these connectors.

Note: Opening the camera case violates the warrantee of the camera.

The Camera can be purchased with several different combinations of options. The standard
configurations are Camera Link, GigE Vision, or Analog.

GIGE VISION INTERFACE
The GigE interface provides TCP/IP access and GigE Vision access to the camera. GigE Vision standard
1.0 is supported by the camera.

CAMERA OPTIONS

 15

Boot
On power up the camera gets its IP number via three different schemes. If a static IP has been
programmed the camera uses the value programmed. If the camera has DCHP enabled an IP address
will be obtained for a responding DCHP server. If the DCHP server does not respond, or if DCHP is
disabled the camera will use Auto IP. Once the camera has an IP address it will wait for a discovery
broadcast by a GigE Vision server on its subnet.

Discovery
The camera will respond to a discovery request as specified by the GigE Vision Standard. It is possible to
bypass discovery and go directly to a command / control connection phase, if the camera is already
known to a GigE server.

Command and Control Connections
A GigE server can make a command and control connection to the camera. Access to the required GigE
vision registers and to the Cell interface to the camera is provided via the GigE vision interface.

Streaming Connections
The streaming interface supports a single channel of streaming data with packet sizes negotiable during
connector, or with fixed packet sizes. In most applications it is not necessary to modify the packet size
manually.

Events
The GigE interface supports Events. The camera can provide a triggered event, or an arbitrary event if
the camera is a smart camera (has a CPU board).

Triggering
The camera may be triggered by hard wiring to the CC1, or opto input 0 interfaces. In addition the camera
may be triggered via the GigE connection. Finally the camera may operate on an internal trigger
generated by the CPU, or via the free running trigger option.

CAMERA LINK INTERFACE
The camera provides a standard base camera link interface. The format of the interface is programmable
8, 10, 12, 14 or 16 bits per pixel one tap, or 8, 10 or 12 bits two taps. CC1 is used as the trigger interface,
and the serial link defaults to 9600 baud, no parity, 8 bits and one stop bit.

Channel Link
The channel link interface operates at 62.5 MHz typically, though this can be modified should the
customer require.

Serial Link
The serial link follows the camera link standard and supports up to 115,200 Baud. The serial link
receivers and drivers can be built with RS485 compatible drivers and receivers. Note, these two pairs do
not support multi drop operation, that is the drivers are always enabled.

CC1 to CC4 inputs
The CC1 input is typically used for triggering, but all four of the inputs can be enabled as trigger sources
should it be needed. These inputs can be used to signal the CPU in a smart camera application.
Internally when these input change state a cell is sent to the sensor board to trigger a frame.
The CC1 to CC4 inputs can be built with LVDS or RS485 drivers and receivers. In both cases direction
and enable is provided, so these pins can implement bi-directional signaling, and true RS485 serial
interfaces. Please contact the factory if you wish to use these pins as outputs.

ANALOG INTERFACE
The analog interface provides a RS343 compatible output which can be programmed to output the
captured monochrome (or Bayer Pattern Monochrome) image as a VCBS (1 volt composite sync) analog
signal. The characteristics are programmable via register 0x0010 to 0x0017 of the I/O board.

 16

SPECIAL INTERFACES
Several special interfaces are provided.

Serial Interface
The serial interface is present in all versions of the camera. When the camera is powered up the serial
interface provides access to the command and control channel in the camera, via a byte serial encoding
of command and control Cells.

Motor Controller Output
The motor control outputs can be configured to drive DC motors directly, or provide a 50 Hz TTL PWM
signal for use with servo motors. The pulse width is programmable from 1 to 2 msec in 256 steps.

Isolated input and outputs
The isolated inputs and outputs are provided on the SDR26 interface connector and replace camera link
signals. The four inputs on the CC1-CC4 signals can be configured as optically isolated outputs. The two
dedicated outputs use the channel link signals so if they are ordered the channel link interface is not
supported

Several software and firmware components are available to support the use of the camera.

FCCM PROGRAM
The FCCM (Fast Camera Control Modular) program provides a direct interface to the Cell interface
internal to the camera. The FCCM program uses the serial interface provided with the camera and
accesses the serial interface using a camera link style serial interface DLL. The FCCM program uses a
special mode of the I/O board FPGA so that it can send and receive cells on the internal serial channel of
the camera.
Subsystem Command Function

fccm B Load Com DLL

fccm C Send a Cell

fccm F Terminal Mode

fccm V Set Verbosity

fccm X Exit Program

fccm ? Help

fccm ! Dos command

fccm Timeout Set timeout in msec

sensor Sensd Dump Sensor Registers

sensor Sensreg Read or Write to Sensor Register

sensor sspie <reg> [<value>] Erase Sensor SPI Flash

sensor Sspipf Program file to Sensor SPI

SOFTWARE AND FIRMWARE

 17

sensor sspipm <list of values> Program manual data to Sensor
SPI

sensor Sspid Display Sensor SPI data

sensor sspise <start byte address><end byte
address>

Sensor SPI Sector Erase

sensor Sspiid Read Sensor SPI Id numbers

sensor sspi2f Output SPI contents to file

sensor Ogtr Offset Gain Table Read

sensor Ogtw Offset Gain Table Write

sensor Ogtm Offset Gain Table Manual

sensor Afeinit Initialized AFE Registers

sensor Afew Write to AFE register

sensor Afer Display last written value AFE

sensor Afem Set AFE debug mux

sensor Afed Dump All AFE registers

sensor Afetp Turn On/off AFE Test pattern

sensor Pboot Program register settings in SPI
flash

sensor ad5621 <5.0 to 15.0 float> Set Subtrate voltage(Ad5621 DAC)

sensor resolution <N cols><N rows> Set Sensor Resolution

sensor v1t <rising><falling> Set V1T edge delays

sensor v2t <rising><falling> Set V2T edge delays

sensor v3t <rising><falling> Set V3T edge delays

sensor v4t <rising><falling> Set V4T edge delays

sensor v1b <rising><falling> Set V1B edge delays

sensor v2b <rising><falling> Set V2B edge delays

sensor v3b <rising><falling> Set V3B edge delays

sensor v4b <rising><falling> Set V4B edge delays

sensor lp <clocks> Set line period

sensor fp <lines> Set frame period

 18

sensor exp <lines> Set Exposure

sensor mclk1 0=aligned to P6 Set AFE1:MCLK delay

sensor mclk2 0=aligned to P6 Set AFE2:MCLK delay

sensor trig <0=free run, 1=Single Edge, 2=Exp-
level>

Set Trigger Mode

sensor tpol <0=Active low/falling 1=active
high/rising

Set Trigger Polarity

sensor Tstat Show trigger status

sensor Cds Set CDS Points

sensor Avgdir Avg images on disk

sensor Mkgain Make Quadrant Gain Image

io Iod Dump IO Registers

io Ioreg Read/Write IO Registers

io Ispie Erase I/O SPI Flash

io Ispipf Program file to I/O SPI

io Ispipm Program manual data to I/O SPI

io Ispid Display I/O SPI data

io Ispise I/O SPI Sector Erase

io Ispiid Read I/O SPI Id numbers

io Ispiws Write the NOV status bits

shell Help Get Help

shell History Display/use command history

COMMAND AND CONTROL CELLS
The command and control channel in the camera uses a ‘Cell’ based command and control protocol. A
‘Cell’ is defined to be a header followed by from 1 to 16 words of payload data. The follow ‘rules’ define
the format of the cells:

1. All frame cells will contain 16 pixels(16 bit) unless it's the last cell of a frame.
2. When the video or command and control channels are idle, a framing pattern is. The idle pattern

for the video channel is 16'hA5A5. The idle pattern for the command and control channel is
16'hA55A. The idle pattern is sent between cells. At least one idle word is sent between every
cell.

3. The first 16-bit word of each cell will be a header word and will contain the following fields:
Reserved (Rsvd[3:0]), Destination Device Address (DDA[3:0]), Cell Type (CT[3:0]), and a Length
(L[3:0]). The format of the header[15:0] is as follows: {Rsvd[3:0], DDA[3:0], CT[3:0], L[3:0]}

 19

4. The reserved field (Rsvd[3:0]) of the header will must contain a value of zero. This value is used
to detect the header after a sequence of idle words.

5. The destination device address field (DDA[3:0]) of the header can contain the following values
0x0 == Sensor_FPGA, 0x1 == CPU_FPGA, 0x2 == NXP CPU, 0x3 == IO_FPGA, 0x4 == Serial
interface on the I/O board. All other destination device address's are reserved and will be routed
to the CPU (if present). The destination address is not used by the video channel.

6. The cell type field (CT[3:0]) of the header can contain the following values: 0x1 == TOF Frame
Cell, 0x2 == INT Frame Cell, 0x3 == EOF Frame Cell, 0x4 == SOL Frame Cell, 0x5 == EOL
Frame Cell, 0x6 == Write Cell, 0x7 == Read Cell, 0x8 == Read Response Cell, 0x9 == Write
Offset-Gain Table Cell, 0xA == Read Offset-Gain Table Cell, 0xB == Read Response Offset-Gain
Table Cell. All other values are reserved and will be routed to the NXP CPU.

7. The length field (L[3:0]) denotes the length of the payload, excluding the header word, minus one.
A length of zero means one payload word, and so on up to 15 which means 16 payload words.

8. The maximum cell length will be 17 words, which will contain one header word and 16 payload
words.

9. Each cell type will contain a unique payload format.
a. TOF (Top of Frame) Cell Format:

Frame Cell Format:
WORD0: header[15:0]
WORD1: frame sequence number[15:0]
WORD2: Timer [15:0]
WORD3: Timer [31:16]

b. Other Frame Cell Format:
WORD0: header[15:0]
…
WORDN: pixel[15:0]

c. Write Cell Format:
WORD0: header[15:0]
WORD1: local_write_address[15:0]
WORD2: local_write_data[15:0]

d. Read Cell Format:
WORD0: header[15:0]
WORD1: local_read_address[15:0]
WORD2: {reserved[11:0], return_device_address[3:0]}

e. Read Response Cell:
WORD0: header[15:0]
WORD1: {reserved[11:0], responder_device_address[3:0]}
WORD2: local_read_address[15:0]
WORD3: read_data[15:0]

f. Write Offset-Gain Table Cell Format:
WORD0: header[15:0] (6 Pix, MAX)
WORD1: 2'd0, start_line_num[10:0] //MAX is 1706
WORD2: 2'd0, start_pix_num[10:0] //MAX is 1264
WORD3: 2'd0, pix0_offset[13:0]
WORD4: 2'd0, pix0_gain[13:0]
WORD5: 2'd0, pix1_offset[13:0]
WORD6: 2'd0, pix1_gain[13:0]
WORD7: 2'd0, pix2_offset[13:0]
WORD8: 2'd0, pix2_gain[13:0]
WORD9: 2'd0, pix3_offset[13:0]
WORDA: 2'd0, pix3_gain[13:0]
WORDB: 2'd0, pix4_offset[13:0]
WORDC: 2'd0, pix4_gain[13:0]

 20

WORDD: 2'd0, pix5_offset[13:0]
WORDE: 2'd0, pix5_gain[13:0]

g. Read Offset-Gain Table Cell Format:
WORD0: header[15:0] (6 Pix, MAX)
WORD1: 2'd0, start_line_num[10:0] //MAX is 1706
WORD2: 2'd0, start_pix_num[10:0] //MAX is 1264
WORD3: {reserved[8:0], burst_size[2:0], return_device_address[3:0]}

h. Read Response Offset-Gain Table Cell Format:
WORD0: header[15:0] (6 Pix, MAX)
WORD1: {reserved[11:0], responder_device_address[3:0]}
WORD2: 2'd0, start_line_num[10:0]
WORD3: 2'd0, start_pix_num[10:0]
WORD4: 2'd0, pix0_offset[13:0]
WORD5: 2'd0, pix0_gain[13:0]
WORD6: 2'd0, pix1_offset[13:0]
WORD7: 2'd0, pix1_gain[13:0]
WORD8: 2'd0, pix2_offset[13:0]
WORD9: 2'd0, pix2_gain[13:0]
WORDA: 2'd0, pix3_offset[13:0]
WORDB: 2'd0, pix3_gain[13:0]
WORDC: 2'd0, pix4_offset[13:0]
WORDD: 2'd0, pix4_gain[13:0]
WORDE: 2'd0, pix5_offset[13:0]
WORDF: 2'd0, pix5_gain[13:0]

10. In order to synchronize both ends of the command and control channel, all cells are transmitted
with at least one idle word between them. The receive FSM (Finite State Machine) should wait in
idle for at least one idle to cell transition. Presumably if a loss of synchronization occurs,
resynchronization will be accomplished in short order.

Note: On the CPU board Frame Cells are routed via a register setting. The register setting values are:
0x0 == frames are forwarded to the IO, 0x1 == frames are forwarded to the CPU && IO, 0x2 == frames
are forwarded to the CPU (Vi_d) and the frames from the CPU (Vo_d) are forwarded to the IO. The CSR
word is at address 0x0000 of the CPU FPGA.

SENSOR BOARD
The following registers are supported by the sensor board FPGA. The registers are programmed by Cell
messages or by the power up initialization script recorded in the SPI flash.

REGISTER R/W/RO BITS Function

0x0000 R/W [0] Trigger Enable

0x0000 R/W [1] Trigger camera if written with a one

0x0000 R/W [15:2] AD5621 data

0x0001 R/W [3:0] AFE1 Channel

0x0001 R/W [11:4] AFE1 Address

0x0001 R/W [14:11]

0X0001 R/W [15] AFE1 Write Enable

 21

0X0002 R/W [11:0] AFE1 Data

0x0002 R/W [15:12]

0x0003 R/W [3:0] AFE2 Channel

0x0003 R/W [11:4] AFE2 Address

0x0003 R/W [14:12] Write Enable

0x0003 R/W [15] AFE2 Write Enable

0x0004 R/W [11:0] Reg[1].[11-0] AFE2 Data

0x0004 R/W [15:12] Debug Mux Control

0x0005 R/W [1:0] CCD Readout Mode

0x0005 R/W [7:4] Horizontal Shift

0x0005 R/W [15:8]

0x0006 R/W [15:0] Sensor ROI Horizontal Start

0x0007 R/W [15:0] Sensor ROI Horizontal End

0x0008 R/W [15:0] Sensor ROI Vertical Start

0x0009 R/W [15:0] ROI Vertical End

0x000A R/W [3:0] Correction Gain Shift Factor

0x000A R/W [7:4]

0x000A R/W [8] Enable Gain Correction

0x000A R/W [11:9]

0x000A R/W [12] Enable Offset Correction

0x000B R/W [0] Enable CCD Driver Power

0x000B R/W [1] Load AD5621 Enable

0x000B R/W [2] CCD State machine enable

0x000B R/W [3] CCD Test Pattern Enable

0x000B R/W [4] Enable AFE1 test patter

0x000B R/W [9:5]

0x000B R/W [14:10] Pixel Write Delay

0x000B R/W [15]

0x000C R/W [15:0] Line Gap Count

 22

0x000D R/W [15:0] SPI Flash Chip Enable

0x000E R/W [15:0] SPI Flash Even bytes

0x000F R/W [15:0] SPI Flash Odd bytes

0x0010 RO [3:0] CCD State machine state

0x0010 RO [4] AFE2 VD

0x0010 RO [5] AFE1 VD

0x0010 RO [6] AFE2 HD

0x0010 RO [7] AFE1 HD

0x0010 RO [15:8]

0x0017 R/W [15:0] Line Period in pixel clocks

0x0018 R/W [15:0] Frame Period in lines

0x0019 R/W [15:0] Exposure in lines

0x001A R/W [1:0] Reg [26].[1-0] AFE1 MCLKA Phase

0x001A R/W [3:2] Reg[26].[3-2] AFE2 MCLKA Phase

0x001A R/W [5:4] Reg[26].[5-4] Trigger Mode

0x001A R/W [6] Reg[26].[6] Use VSUB Shutter Enable

0x001A R/W [7] Reg[26].[7] Trigger Active High Enable

0x001A R/W [8] Reg[26].[8] CC1 Trigger Enable

0x001A R/W [9] Reg[26].[9] CC2 Trigger Enable

0x001A R/W [10] Reg[26].[10] CC3 Trigger Enable

0x001A R/W [11] Reg[26].[11] CC4 Trigger Enable

0x001A R/W [15:12]

0x001B R/W [3:0] V1T Rising Edge Delay

0x001B R/W [7:4] V1T Falling Edge Delay

0x001B R/W [11:8] V2T Rising Edge Delay

0x001B R/W [15:12] V2T Falling Edge Delay

0x001C R/W [3:0] V3T Rising Edge Delay

0x001C R/W [7:4] V3T Falling Edge Delay

0x001C R/W [11:8] V4T Rising Edge Delay

 23

0x001C R/W [15:12] V4T Falling Edge Delay

0x001D R/W [3:0] V1B Rising Edge Delay

0x001D R/W [7:4] V1B Falling Edge Delay

0x001D R/W [11:8] V2B Rising Edge Delay

0x001D R/W [15:12] V2B Falling Edge Delay

0x001E R/W [3:0] V3B Rising Edge Delay

0x001E R/W [7:4] V3B Falling Edge Delay

0x001E R/W [11:8] V4B Rising Edge Delay

0x001E R/W [15:12] V4B Falling Edge Delay

0x001F R/W [0] CC1 State

0x001F R/W [1] CC2 State

0x001F R/W [2] CC3 State

0x001F R/W [3] CC4 State

0x001F R/W [4] CC1 Changed

0x001F R/W [5] CC2 Changed

0x001F R/W [6] CC3 Changed

0x001F R/W [7] CC4 Changed

0x001F R/W [15:8]

0x0020 RO [15:0] AFE1 DCLK Frequency

0x0021 RO [15:0] AFE2 DCLK Frequency

0x0022 RO [15:0] AFE1 CCLK Frequency

0x0023 RO [15:0] AFE2 CCLK Frequency

0x0024 RO [15:0] Frame Counter

0x0025 RO [15:0] usec Timer Low

0x0026 RO [15:0] usec Timer high

0x0027 RO [15:0] usec at last frame low

0x0028 RO [15:0] usec at last frame high

 24

CPU BOARD

XIO REGISTERS

The following registers are in the XIO space of the CPU on the CPU board. The can be read or written by
dereferencing points to the XIO base address plus the register offset. The interface is 16 bits.

Register R/W/RO Bits Function

0x0000 R/W [1:0] Frame Cell routing
Frame Cells are routed via a CSR setting.
0x0 == frames are forwarded to the IO
0x1 == frames are forwarded to the CPU && IO
0x2 == frames are forwarded to the CPU (Vi_d) and the frames
from the CPU (Vo_d) are forwarded to the IO.

0x0000 R/W [15:2] not used
0x0001 R/W [15:0] Bits[15:0] vdi_gap_csr Sets the speed that the FPGA can send

FGPI messages larger numbers mean slower.
0x0002 R/W [0] Bits[0] Send single frame
0x0002 R/W [1] Bits[1] Continous frame
0x0002 R/W [15:2] Not used
0x0003 R/W [10:0] Start pixel number
0x0003 R/W [15:11

]
not used

0x0004 R/W [10:0] End pixel number
0x0004 R/W [15:11

]
not used

0x0005 R/W [10:0] Start line number
0x0005 R/W [15:11

]
not used

0x0006 R/W [10:0] End line number
0x0006 R/W [15:11

]
not used

0x0007 R/W [15] c3_p0_cmd_en Command field contains a memory command
0x0007 R/W [14:12

]
c3_p0_cmd_instr Memory Command

0x0007 R/W [11:6] c3_p0_cmd_bl burst length
0x0007 R/W [5] c3_p0_wr_en Command is a write
0x0007 R/W [4:1] c3_p0_wr_mask Byte line write enables
0x0007 R/W [0] c3_p0_rd_en Command is a read
0x0008 R/W [15:0] MemoryWriteData[31:16]
0x0009 R/W [15:0] MemoryWriteData[15:0]
0x000A R/W [15:14

]
temp_addr

0x000A R/W [13:0] Memory Address for the command c3_p0_cmd_byte_addr[29:16]
0x000B R/W [15:0] Memory Address for the command c3_p0_cmd_byte_addr[15:0]
0x000C RO [15:0] Reads 0xAAAA;
0x000D RO [15:0] Reads 0x55555;
0x000E RO [15:10

]
Zero

0x000E RO [9] c3_p0_cmd_empty Memory Controller Command FIFO empty
0x000E RO [8] c3_p0_cmd_full Memory Controller Command FIFO full

 25

0x000E RO [7] c3_p0_wr_full Memory Controller Write Data FIFO full
0x000E RO [6] c3_p0_wr_empty Memory Controller Write Data FIFO empty
0x000E RO [5] c3_p0_wr_underrun Memory Controller Write Data was not

available when the write command ran
0x000E RO [4] c3_p0_wr_error Memory Controller Write Error Flag
0x000E RO [3] c3_p0_rd_full Memory Controller Read Data FIFO Full
0x000E RO [2] c3_p0_rd_empty Memory Controller Read Data FIFO Empty
0x000E RO [1] c3_p0_rd_overflow Memory Controller Read Data overflowed
0x000E RO [0] c3_p0_rd_error Memory Controller Read Error Flag
0x000F RO [15:14

]
Zero

0x000F RO [13:7] c3_p0_wr_count Write FIFO count
0x000F RO [6:0] c3_p0_rd_count Read FIFO count
0x0010 RO [15:0] MemoryReadData[31:16]
0x0011 RO [15:0] MemoryReadData[15:0]
0x0012 RO [15:0] line_in_frame[15:0]
0x0013 RO [15:0] pixels_in_frame[11:0]
0x0014 R/W [15:3] not used
0x0014 R/W [2] Interrupt Mask Default 1 at power-up. When 0 FIFO not empty will

generate IRQ(level) on PCI_REQ_B_B
0x0014 R/W [1] ClearUntilNextHeader Writing a ‘1’ to this bit will move the next

message to start of FIFO. Will auto reset to 0
0x0014 R/W [0] Clear FIFO Writing a ‘1’ to this bit will empty/reset FIFO. Will auto

reset to 0
0x0015 R/W [15:1] not used
0x0015 R/W [0] FIFO read enable Writing a ‘1’ to this bit will move the next word

to start of FIFO. Will auto reset to 0. FIFO must be popped first
before read

0x0016 RO [15] DataReady Indicates more 1 or more messages available in FIFO
0x0016 RO [14] Overrun Indicates buffer overrun
0x0016 RO [13] MessageHeader Indicates if next word in Fifo is a

MessageHeader
0x0016 RO [12:8] Number of msgs in Fifo Actual number of msgs in FIFO, max is

31 if word count > 31, count is set to 31
0x0016 RO [7:0] Number of 16-bit words in Fifo Actual number of 16-bit words in

FIFO, max is 255 if word count > 255, count is set to 255
0x0017 RO [15:0] sensor serial message fifo read data
0x0018 R/W [15:4] not used
0x0018 R/W [3] Interrupt Mask Default 1 at power-up. When 0 FIFO not empty will

generate IRQ(level) on PCI_REQ_B_B
0x0018 R/W [2] ClearUntilNextHeader Writing a ‘1’ to this bit will move the next

message to start of FIFO. Will auto reset to 0
0x0018 R/W [1] FIFO read enable Writing a ‘1’ to this bit will move the next word

to start of FIFO. Will auto reset to 0. FIFO must be popped first
before read

0x0018 R/W [0] Clear FIFO Writing a ‘1’ to this bit will empty/reset FIFO.
0x0019 R/W [15:1] not used
0x0019 R/W [0] FIFO read enable Writing a ‘1’ to this bit will move the next word

to start of FIFO. Will auto reset to 0. FIFO must be popped first
before read

0x001A RO [15] DataReady Indicates more 1 or more messages available in FIFO
0x001A RO [14] Overrun Indicates buffer overrun

 26

0x001A RO [13] MessageHeader Indicates if next word in Fifo is a
MessageHeader

0x001A RO [12:8] Number of msgs in Fifo Actual number of msgs in FIFO, max is
31 if word count > 31, count is set to 31

0x001A RO [7:0] Number of 16-bit words in Fifo Actual number of 16-bit words in
FIFO, max is 255 if word count > 255, count is set to 255

0x001B RO [15:0] IO serial message fifo read data
0x001C RO [15:0] FPGA revision
0x001D RO [15:4] not used
0x001D RO [3] Cell error status error cell, not sent not flushed.
0x001D RO [2] Cell OK status Cell in right format and sent
0x001D R/W [1] Reset FIFO Writing a ‘1’ to this bit will empty/reset FIFO. Will auto

reset to 0
0x001D R/W [0] Transmit Cell Writing a ‘1’ to this bit will send the message in the

FIFO. The FIFO should a complete message in it. Will auto reset
to 0

0x001E R/W [15:0] Cell message word Writing the register will push cell word into
FIFO

0x001F RO [15:4] not used
0x001F RO [3] Cell error status error cell, not sent not flushed.
0x001F RO [2] Cell OK status Cell in right format and sent
0x001F R/W [1] Reset FIFO Writing a ‘1’ to this bit will empty/reset FIFO. Will auto

reset to 0
0x001F R/W [0] Transmit Cell Writing a ‘1’ to this bit will send the message in the

FIFO. The FIFO should a complete message in it. Will auto reset
to 0

0x0020 R/W [15:0] Cell message word Writing the register will push cell word into
FIFO

CPU Board Process Cell API

The FCXXX camera is a very modular camera, which consists of a number of building blocks. At the
minimum, the camera has an I/O.board, that connects to the host via Camera-Link or GigE and a Sensor-
board. The camera can be extended with a cpu-board, that gets inserted between the i/o-board and the
sensor-board. Currently a PNX1702 is used on the CPU-board. The main-purpose of the cpu-board is to
add special functionality, such as image-handling and statistics. The pnx-cpu can be programmed by the
user, to add special functions to the application, that the camera is used in. The programming
environment is PNX SDK + JTAG for debugging.

VIDEO-BUS AND MESSAGE-BUS
The FCXXXhas a number of busses, that moves video from sensor to i/o-board and/or cpu-board and
messages between i/o-board, cpu-board and sensor-board.

CPU video in/out and message handling
The cpu receive video from CPU-FPGA to FGPI 32-bits wide, if FPGA video-routing is set to 2.It sends
video to i/o-board via FGPO 32-bits wide -> CPU-FPGA. All cell-messages, that are not video, are
handled via registers in CPU_FPGA.

FGPISRVHANDLER

A demo-server for receiving video-frames is provided in fc205_cpu.c in

FC XXX CPU FIRMWARE

 27

void FgpiSrvHandler(void* args)

The following functions in same file have been provided to start and stop this server from the debugger
shell, for testing:

void FgpiStartServer(TCHAR *cmd_line)
void FgpiStopServer(TCHAR *cmd_line)

FGPOSRVHANDLER

A demo-server for sending frames from cpu to i/o-board has been provided in fc205_cpu.c in:

void FgpoSrvHandler(void* args)

The following functions in same file have been provided to start and stop this server from the debugger
shell, for testing:

void FgpoStartServer(TCHAR *cmd_line)
void FgpoStopServer(TCHAR *cmd_line)

RTCELL ROUTING OF VIDEO

Following function has been provided to set the routing of video-cells from the sensor-board:

void SetRoute(TCHAR *cmd_line)

If no parameters , current setting is displayed.
Following options are available:

rtcell –r0<cr> Set routing to Sensor-board to i/o-board
rtcell –r1<cr> Set routing to Sensor-board to i/o-board + cpu-board
rtcell –r2<cr> Set routing to Sensor-board to cpu-board and cpu-board to i/o-board

EXAMPLE OF VI + VO + ROUTING OF VIDEO-CELLS

For testing from debugger-shell, the following sequence will set routing to sensor->cpu/cpu->i/o-board,
start video-out-srv and video-in-srv. The video-in-srv will send every 2nd frame to video-out-srv, which will
show up on the output on the i/o-board. The communication between the video-in-srv and video-out-srv is
made via a queue. It is the intention that the user can make changes, that suit their application. This is
only shown as an example on how to use VI and VO and the setup VI-handling and VI to VO
communication.

MSGSRVHANDLER

For handling non-video cell-messages, a message-server-handler has been provided. It is located in
interrupt.c:

 28

void MsgSrvHandler(void* args)

This server provides handling of the following non-video cell-messages:

Read, write and read-response.
Write-requests are handled differently, depending on the write-address in the cell-messages.
The MsgSrvHandler() is by default started in tmMain() function.

I/O-board opto-electronics change of state
Any changes of state in the opto-electronics on the i/o-board, result in a write cell-message to cpu at addr
0x0, with at copy of the data. The user should expand the following function in interrupt.c:

void IoMsgWriteRequest(msg_t *pMsg)

to handle this request.

Write-requests
Same function also handles uart-receive-data write-request and write-data to cpu-storage if write-addr is
within 0x1000 – 0x10FF. All other write-requests are ignored.Please see interrupt.h:

typedef struct fc205_cpu_storage

Read-requests
If a read-request is received and read-addr is within 0x1000 – 0x10FF, the data in ReadOut cpu-storage
is returned, using read-addr as index. By default index 0(0x1000) contains FPGA-rev-id and index
1(0x1001) contains ROI last used on VideoIn to pnx-cpu. Other can be user-defined as needed.
Please modify following function in interrupt.c to your needs:

void IoMsgReadRequest(msg_t *pMsg)

Read-response-request
If pnx-cpu sends a read-request to sensor-board or i/o-board (or host, if uart is not in uart-mode), then
pnx-cpu will receive a read-response-package. Please modify following function in interrupt.c to your
needs:

void IoMsgReadResponseRequest(msg_t *pMsg)

Uart receive chars
If uart in i/o-board is programmed to uart-mode, then all data sent from host to uart on i/o-board are re-
packaged into cell-messages and forwarded to addr 0x100(if number of chars in cell are even) or addr
0x101(if number of chars in cell are odd).
These cells are extracted into a receive-buffer, for readout by user.
Following 2 functions are provided for checking for chars ready and reading chars:

/**
*
* CheckUartTxFifo will read a register on IO board, that shows:
* Fifo Full, Fifo HalfFull or Fifo Empty
*
* \fn : int CheckUartTxFifo(UInt16 *pIoUartFifoStatus)
*

 29

* \param : UInt16 *pIoUartFifoStatus : Placeholder for returning IoUart 0 =
more than half full, 1 = half full and 2 = empty, fifo status: 3 = full
*
*
* \return : TM_OK if no errors else appropriate error code
*
**/
int CheckUartTxFifo(UInt16 *pIoUartFifoStatus)

/**
*
* RxUartCharFC205 returns the number of char requested is available.
* pCount have have actual number of chars returned
* Timeout defines number of MilliSecs to wait
*
* \fn : int RxUartCharFC205(char *pCharBuffer, UInt16 *pCount, int Timeout)
*
* \param : char *pCharBuffer : Pointer to buffer, where char(s) will be
stored
* \param : UInt16 *pCount : Number of chars requested. If less, pCount
will reflect return-count
* \param : int Timeout : Number of MilliSecs to wait for request
*
*
* \return : TM_OK if no errors, else appropriate error code

**/
int RxUartCharFC205(char *pCharBuffer, UInt16 *pCount, int Timeout)

Uart transmit chars
Following function is provided for transmitting chars to host:

/**
*
* TxUartCharFC205 will send requested number of chars to Host
*
* \fn : int TxUartCharFC205(char *pCharBuffer, UInt16 Count)
*
* \param : char *pCharBuffer
* \param : UInt16 Count
*
*
* \return : TM_OK if no errors else appropriate error code
*
**/
int TxUartCharFC205(char *pCharBuffer, UInt16 Count)

SENDING CELL – MESSAGES

Cell – messages can be sent to sensor-board, i/o-board and host(if uart on i/o-board is not in uart-mode).
The following structs have been created for this purpose:

typedef struct MsgWritePacket
{
 msg_header_t MsgHdr ; // msg-header
 UInt16 LocalWriteAddress ; // Local write address at target
 UInt16 LocalWriteData[15] ; // Data to write at target
} MsgWritePacket_t ;

typedef struct MsgReadPacket
{
 msg_header_t MsgHdr ; // msg-header
 UInt16 LocalReadAddress ; // Local read address at target
 UInt16 ReturnAddress:4 ; // Return addr of requester
 UInt16 Reserved:12 ; // Reserved bits
} MsgReadPacket_t ;

 30

Following struct has been created for ReadResponse:
typedef struct MsgReadResponsePacket
{
 msg_header_t MsgHdr ; // msg-header
 UInt16 ResponderAddress:4 ; // Address of responder
 UInt16 Reserved:12 ; // Reserved bits
 UInt16 LocalReadAddress ; // Local read address at target
 UInt16 ReadData[14] ; // Read Data
} MsgReadResponsePacket_t ;

Fill in the appropriate fields and call following function in fc205_cpu.c:

void fc205_send_cell (cell_t *cell)

with each of the structs type-casted to ‘cell_t’.

command_sensreg_api
A number of functions are provided as examples for doing this:
Fc205_cpu.c:

void command_sensreg_api (short addr, short data)

The above function takes an addr and data as parameters and formats a CELL_WRITE package and
sends it to the sensor-board.

command_ioreg_api

void command_ioreg_api (short addr, short data)

The above function takes an addr and data as parameters and formats a CELL_WRITE package and
sends it to the i/o-board.

API – FUNCTIONS

A number of functions have been provided as an api to functionality on the fc205 cpu-board:

GetRoi_api
/**
*
* GetRoi gets the Roi in the FPGA, by reading the Roi registers
*
* \fn : int GetRoi(short *StartPix, short *EndPix, short *StartLine, short
*EndLine)
*
* \param1 : short *StartingPixel : Placeholder for starting pixel in the
line
* \param2 : short *EndingPixel : Placeholder for ending pixel in the line
* \param3 : short *StartingLine : Placeholder for starting line
* \param4 : short *EndingLine : Placeholder for ending line
*
*
* \return : tm_OK if no errors, else appropriate error
*
**/
int GetRoi_api(UInt16 *StartPix, UInt16 *EndPix, UInt16 *StartLine, UInt16
*EndLine)

SetRoi_api
/**

 31

*
* SetRoi_api sets the requested Roi in the FPGA, by defining
* a starting pixel, ending pixel, stating line and ending line
*
* \fn : int SetRoi_api(short StartPix, short EndPix, short StartLine, short
EndLine)
*
* \param1 : short StartingPixel : Defines starting pixel in the line
* \param2 : short EndingPixel : Defines ending pixel in the line
* \param3 : short StartingLine : Defines starting line
* \param4 : short EndingLine : Defines ending line
*
*
* \return : tm_OK if no errors, else appropriate error
*
**/
int SetRoi_api(UInt16 StartPix, UInt16 EndPix, UInt16 StartLine, UInt16 EndLine)

GetFrameControl_api
/**
*
* GetFrameControl_api gets FrameControl addr 2(+0x04 on FPGA_XIO_BASE_ADDR)
*
* \fn : int GetFrameControl_api(UInt16 *FrameControl)
*
* \param : UInt16 *FrameControl : Address to store value
*
*
* \return : TM_OK if no error else XIO-error
*
**/
int GetFrameControl_api(UInt16 *pFrameControl)

CaptureOneFrame_api
/**
*
* CaptureOneFrame_api sets bit0 of FrameControl addr 2(+0x04 on FPGA_XIO_BASE_ADDR)
*
* \fn : int CaptureOneFrame_api()
*
* \param : none
*
*
* \return : TM_OK if no error else XIO-error
*
**/
int CaptureOneFrame_api()

CaptureContinousFrame_api
/**
*
* CaptureContinousFrame_api sets/clears bit1 of FrameControl addr 2(+0x04 on
FPGA_XIO_BASE_ADDR)
*
* \fn : int CaptureContinousFrameOff_api(bool OnOff)
*
* \param1 : Bool OnOff : 0 = off, 1 = on
*
*
* \return : TM_OK if no error else XIO-error
*
**/
int CaptureContinousFrame_api(Bool OnOff)

 32

GetFpgaRevID_api
/**
*
* GetFpgaRevID_api return Fpga Rev ID
*
* \fn : int GetFpgaRevID_api(UInt16 *FpgaRevID)
*
* \param : none
*
*
* \return : TM_OK if no errors, else appropritate errorcode
*
**/
int GetFpgaRevID_api(UInt16 *FpgaRevID)

SetShowUartMode_api
/**
*
* SetShowUartMode_api sets/shows the mode of the Uart to cell-mode or Uart-mode
*
* \fn : int SetShowUartMode_api(UInt16 UartMode)
*
* \param : UInt16 UartMode : Uart´mode: 0 = cell, 1 = uart, 2 = display only
*
*
* \return : TM_OK if no error, else appropriate error code
*
**/
int SetShowUartMode_api(UInt16 UartMode, UInt16 *pRetUartMode)

setupCpuStorageReadOut_api
/**
*
* SetupCpuStorageReadOut initializes the CpuStorageReadOut - memory
*
* \fn : int SetupCpuStorageReadOut()
*
* \param : none
*
*
* \return : 0 if o.k. else last errorode
*
**/
int SetupCpuStorageReadOut_api()

MsgSrvStart_api
/**
*
* MsgSrvStart_api starts message receive - server
*
* \fn : int MsgSrvStart_api()
*
* \param : none
*
*
* \return : TM_OK if no errors, else appropriate error
*
**/
int MsgSrvStart_api()

I/O BOARD FIRMWARE
The follow registers are accessible on the I/O board using cells.

Register R/W/R Bits Function

 33

O

0x0000 R/W [0] CL Clk 33/66 MHz
0x0000 R/W [1] CL Clk 42.5/85 MHz
0x0000 R/W [2] CL Clk (33/66)/(42/85) MHz
0x0001 R/W [0] Optical Output 1
0x0001 R/W [1] Optical Output 2
0x0001 R/W [15:2] Not used
0x0002 R/W [0] Optical Input 1
0x0002 R/W [1] Optical Input 2
0x0002 R/W [2] Optical Input 3
0x0002 R/W [3] Optical Input 4
0x0002 R/W [4] Optical Input 1 Changed
0x0002 R/W [5] Optical Input 2 Changed
0x0002 R/W [6] Optical Input 3 Changed
0x0002 R/W [7] Optical Input 4 changed
0x0002 R/W [15:8] Not Used
0x0003 R/W [0] LED 1
0x0003 R/W [1] LED 2
0x0003 R/W [15:2] Not Used
0x0004 R/W [8:0] Motor 1 PWM
0x0004 R/W [9] Motor 1 On
0x0004 R/W [15:10] Not Used
0x0005 R/W [8:0] Motor 2 PWM
0x0005 R/W [9] Motor 2 On
0x0005 R/W [15:10] Not Used
0x0006 R/W [8:0] Motor 3 PWM
0x0006 R/W [9] Motor 3 On
0x0007 R/W [15:0] Baud Rate Divisor
0x0008 R/W [15:0] Not Used
0x0009 R/W [15:0] Not Used
0x000A R/W [15:0] Not Used
0x000B R/W [15:0] Not Used
0x000C R/W [3:0] CL LSB Select
0x000C R/W [5:4] Bits per pixel
0x000C R/W [6] Two Tap Enable
0x000C R/W [7] Enable Header
0x000C R/W [15:8] Not Used
0x000D R/W [3:0] GigE LSB Select
0x000D R/W [15:4] Not Used
0x000E R/W [0] CC1 input
0x000E R/W [1] CC2 input
0x000E R/W [2] CC3 input
0x000E R/W [3] CC4 input
0x000E R/W [4] CC1 Changed Bit
0x000E R/W [5] CC2 Changed Bit

 34

0x000E R/W [6] CC3 Changed Bit
0x000E R/W [7] CC4 Changed Bit
0x000E R/W [15:8] Not Used
0x000F R/W [0] Enable Camera Link Output
0x0010 R/W [15:0] Analog Output Clocks Per Line
0x0011 R/W [15:0] Analog Output Horz. Active
0x0012 R/W [7:0] Hsync width
0x0012 R/W [15:8] Hsync position
0x0013 R/W [15:0] Analog Output Lines Per Frame
0x0014 R/W [15:0] Analog Output Vertical Acrive
0x0015 R/W [7:0] VSync width
0x0015 R/W [15:8] Vsync position
0x0016 R/W [0] Analog Out DAC Enable
0x0017 R/W [1] Analog Out 150MHz Enable

The smart camerais 63mm x 63mm x 57mm not including the protrusion of the connector bodies. The
smart camera dissipates 14 Watts maximum.

The dumb camera (camera without a CPU board) is 63mm x 63mm x 49mm not including the connector
bodies. The dumb camera dissipates 8 Watts maximum.

The dumb and smart cameras may be cooled by conduction by mounting it to a cold plate at a maximum
of 50 degrees C. Forced are cooling can also be used, in which case the camera requires 50 LFM air flow
at a maximum of 50 degrees C.

SIZE AND COOLING

 35

TROUBLESHOOTING

There are several things you can try before you call FastVision Technical Support for help.

_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure that the system is properly installed.

_____ Go back over the software installation to make sure you have installed all necessary software.

_____ Run the Installation User Test to verify correct installation of both hardware and software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the FastVision CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

 36

FASTVISION TECHNICAL SUPPORT
FastVision offers technical support to any licensed user during the normal business hours of 9 a.m. to
5 p.m. EST. We offer assistance on all aspects of processor board and PMC installation and
operation.

CONTACTING TECHNICAL SUPPORT

To speak with a Technical Support Representative on the telephone, call the number below and ask for
Technical Support:

 Telephone: 603-891-4317

If you would rather FAX a written description of the problem, make sure you address the FAX to
Technical Support and send it to:

Fax: 603-891-1881

You can email a description of the problem to support@FastVision.com

Before you contact technical support have the following information ready:

_____ Serial numbers and hardware revision numbers of all of your boards. This information is written
on the invoice that was shipped with your products.

_____ Also, each board has its serial number and revision number written on either in ink or in bar-code
form.

_____ The version of the FASTVIEWER, or FAST CAMERA-DVRP software that you are using.

_____ The type and version of the host operating system, i.e., Windows 98.

_____ Note the types and numbers of all your software revisions, daughter card libraries, the application
library and the compiler

_____ Returning Products for Repair or Replacements

Our first concern is that you be pleased with your FastVision products.

If, after trying everything you can do yourself, and after contacting FastVision Technical Support, you feel
your hardware or software is not functioning properly, you can return the product to FastVision for service
or replacement. Service or replacement may be covered by your warranty, depending upon your
warranty. The first step is to call FastVision and request a “Return Materials Authorization” (RMA)
number. This is the number assigned both to your returning product and to all records of your
communications with Technical Support. When a FastVision technician receives your returned hardware
or software he will match its RMA number to the on-file information you have given us, so he can solve
the problem you’ve cited.

When calling for an RMA number, please have the following information ready:

_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications, daughter cards,
etc.

_____ A clear and detailed description of the problem and when it occurs

 37

_____ Exact code that will cause the failure

_____ A description of any environmental condition that can cause the problem

All of this information will be logged into the RMA report so it’s there for the technician when your product
arrives at FastVision. Put boards inside their anti-static protective bags. Then pack the product(s)
securely in the original shipping materials, if possible, and ship to:

FastVision LLC.

71 Spit Brook Road, Suite 200
Nashua, NH 03060

USA

Clearly mark the outside of your package:
Attention RMA #90XXX

Remember to include your return address and the name and number of the person who should be
contacted if we have questions.

Reporting Bugs

We at FastVision are continually improving our products to ensure the success of your projects. In
addition to ongoing improvements, every FastVision product is put through extensive and varied testing.
Even so, occasionally situations can come up in the fields that were not encountered during our testing at
FastVision.

If you encounter a software or hardware problem or anomaly, please contact us immediately for
assistance. If a fix is not available right away, often we can devise a work-around that allows you to
move forward with your project while we continue to work on the problem you’ve encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help if you
create a stand-alone code module that is isolated from your application and yet clearly demonstrates the
anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@FastVision.com

We will compile and run the module to track down the anomaly you’ve found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the code to a disk,
describe the error, and mail the disk to Technical Support at the FastVision address below.

If the code is small enough, you can also:

FAX the code module to us at 603-891-1881

If you are faxing the code, write everything large and legibly and remember to include your description of
the error.

When you are describing a software problem, include revision numbers of all associated software.

For documentation errors, photocopy the passages in question, mark on the page the number and title of
the manual, and either FAX or mail the photocopy to FastVision.

Remember to include the name and telephone number of the person we should contact if we have
questions.

FastVision LLC.
131 Daniel Webster Highway, #529

Nashua, NH 03060
USA

Telephone: 603-891-4317

 38

FAX: 603-891-1881

Web site:
http://www.FastVision.com/

Electronic Mail:

sales@FastVision.com
support@FastVision.com

