

FASTMOTION STRETCH LIBRARY

FASTMOTION STRETCH LIBRARY
USER’S MANUAL

2 of 47

3 of 47

COPYRIGHT NOTICE

Copyright © 200-2007 by Alacron Inc.

All rights reserved. This document, in whole or in part, may not be copied, photocopied, reproduced,
translated, or reduced to any other electronic medium or machine-readable form without the express
written consent of Alacron Inc.

Alacron makes no warranty for the use of its products, assumes no responsibility for any error, which may
appear in this document, and makes no commitment to update the information contained herein. Alacron
Inc. retains the right to make changes to this manual at any time without notice.

 Document Name: Fast Motion User’s Manual

 Document Number: 30002-00395

 Revision History: 1.0 Jan 25, 2003

2.0 April 10, 2003

3.0 April 10, 2007

Trademarks:
Alacron® is a registered trademark of Alacron Inc.

FastSeries® is a registered trademark of Alacron Inc.

Solaris™ is a trademark of Sun Microsystems Inc.

Unix® is a registered trademark of Sun Microsystems Inc.

Windows™, Windows 95™, Windows 98™, Windows 2000™, Windows NT™, and Windows
XP™ are trademarks of Microsoft

All trademarks are the property of their respective holders.
Alacron Inc.

71 Spit Brook Road, Suite 200

Nashua, NH 03060

USA

Telephone: 603-891-2750

Fax: 603-891-2745

Web Site: http://www.alacron.com/

Email:sales@alacron.com, or support@alacron.com

4 of 47

5 of 47

TABLE OF CONTENTS

1. INTRODUCTION ...7
1.1 PURPOSE ...7
1.2 AUDIENCE ..8
1.3 FASTMOTION STRETCH LIBRARY..8

2. LIBRARY VERSIONS ...8
1.4 INCLUDE FILE..8
1.5 DATA TYPES- MATRICES AND IMAGES ..8
1.6 FASTMOTION LIBRARY REFERENCE ...9
1.7 MEMORY USE ...10
1.8 API FUNCTIONS OF THE FASTMOTION LIBRARY ..10

3. FAST-X UXGA FUNCTIONS ..18
1.9 API FUNCTIONS OF THE FASTMOTION UXGA OPTION LIBRARY...18
1.10 COMMAND SUMMARY ..20

4. UXGA CAPTURE CONTROL FILE CONTENT..22
1.11 [STRETCH] SECTION..22
1.12 [PLL] SECTION ...23
1.13 [BUFFER.1] SECTION ..24
1.14 [BUFFER.2] SECTION ..24
1.15 [AFML] SECTION ..24
1.16 [UXGA.1] AND [UXGA.2] SECTIONS..24
1.17 [CAPTURE.1] AND [CAPTURE.2] SECTIONS ...25
1.18 [AD9888B.1 AND [AD9888B.2] SECTIONS ..26

5. THE AD9888 REGISTERS..27
1.19 AD9888 CONTROL REGISTER DETAIL ...30

6. EXAMPLE SETTINGS...41

7. TUNING THE SETTINGS..42

8. GENERAL INFORMATION...44
1.20 TROUBLESHOOTING ...44
1.21 ALACRON TECHNICAL SUPPORT...44

6 of 47

OTHER ALACRON MANUALS
Alacron manuals cover all aspects of FastSeries hardware and software installation and operation. Call
Alacron at 603-891-2750 and ask for the appropriate manuals from the list below if they did not come in
your FastSeries shipment.

• 30002-00148 ALFAST Runtime Software Programmer’s Guide & Reference

• 30002-00150 FastSeries Library User’s Manual

• 30002-00153 Fast I/O Hardware User’s Manual

• 30002-00155 FastMem Hardware User’s Manual

• 30002-00162 FOIL – FastSeries Object Imaging Library User’s Manual

• 30002-00169 ALRT Runtime Software Programmer’s Guide & Reference

• 30002-00170 ALRT, ALFAST & FASTLIB Software Installation Manual for Linux

• 30002-00171 ALRT, ALFAST, & FASTLIB Software Installation for Windows NT

• 30002-00173 FastMem Programmer’s Guide & Reference

• 30002-00176 FastImage 1300 Hardware User’s Manual

• 30002-00180 Fast4 1300 Hardware User’s Manual

• 30002-00184 FastSeries Getting Started Manual

• 30002-00183 FastImage 1300 Camera Integration User’s Manual

• 30002-00185 FastVision Hardware User’s Manual

• 30002-00186 FastVision Software User’s Manual

• 30002-00187 FastFrame 1300 Hardware User’s Manual

7 of 47

1. INTRODUCTION
This manual covers the Alacron FASTMOTION LIBRARY software. The FASTMOTION LIBRARY
enables the software developer to embed FASTMOTION functionality into their application. The
FASTMOTION LIBRARY and Application use the OCX model for windows development as diagrammed
below.

1.1 Purpose

8 of 47

The FastMotion Library provides calling specifications and descriptions for the Alacron FastMotion
Library of fast image capture functions.

1.2 Audience

This section of the manual is intended for technical personnel responsible for developing video
capture application software to run in the host computer using Alacron boards. This manual assumes
familiarity with operating system commands to configure the software and with the C programming
language.

1.3 FASTMOTION STRETCH Library
The Alacron FastMotion Library for the FastSeries family of processor boards is based on Alacron
Runtime (ALRT) software. The FastMotion Library enables capturing sequences of high frame rate
images from a variety of digital and analog sources into system memory (RAM). The FastMotion Library
supports developing capture application under Microsoft Windows XP and Linux.

This section provides an overview of the FastMotion Library data types and functions. Function calling
sequences, return values and other specifics are provided in the next chapter.

2. LIBRARY VERSIONS
The FastMotion Library is distributed with a dynamically linked library for the host computer and with a set
of board programs and capture profile files suitable for the different types of boards and input sources.
Host programs that wish to use FastMotion Library functions should link to alfml.lib. In the Linux
environment FastMotion Library is a staticly linked library alfml.a.

1.4 Include File

Application programs using the FastMotion Library should include <alfml.h>, which is in the
installation directory.

1.5 Data Types- Matrices and Images
A matrix or image is a two-dimensional array of values defined by a pointer (or array address), a vertical
stride, the number of rows and the number of columns. These values may either be real or complex. The
vertical stride defines the address increment from one row of the array to the next, and allows the
referencing of “sub-arrays” of the image. The FastMotion Library uses row-major order. Successive
locations in memory contain successive elements of a row, until the end of the row, which is followed by
the first element of the next row. If a program desires column-major order, swap the row and column input
arguments to achieve the desired result.

9 of 47

1.5.1 List of Functions

The FastMotion Library contains the following functions:

AlfmlOpen
AlfmlClose
AlfmlSetCallBack
AlfmlStartGrab
AlfmlStopGrab
AlfmlGetImage
AlfmlGetLastImageIndex
AlfmlGetBufferSize
AlfmlGetFramesCount
AlfmlSetChannel
AlfmlGetLastError
AlfmlGetErrorStr

The functions above are present in all versions of the FastMotion Library. Each specific product
configuration can have additional interfaces.

1.6 FastMotion Library Reference
This chapter provides detailed documentation on the functions in the FastMotion Library.

Each function is listed on a separate page showing input arguments, output arguments, and execution
functionality. The functions that are part of the FastMotion Library are executed on the PC. The
FastMotion Library supports users who do not want to develop software for the Stretch processor on the
Fast-X/e boards. The FastMotion Library block diagram is show below.

Video B
uffer

Video B
uffer

Video B
uffer

Video B
uffer

Video B
uffer

Video B
uffer

Video B
uffer

Video B
uffer

The data flows by successive DMA operations. Video data from the video source is DMAed into Stretch
memory, in to a ring of buffers. At the same time the Stretch processor can be performing processing on
a buffer to an output buffer. Again at the same time the Stretch DMA controller is transferring a completed

10 of 47

buffer to the host memory. The FastMotion Library traps an event from the Stretch processor which
identifies the new filled buffer in memory. The thread in the FastMotion Library (not a user thread) makes
a callback to a user provided callback function and provides a buffer index, which is turned into a buffer
address by a separate API. Assuming all the DMAs and processors can keep up data flows.

In the case where data flow is faster than processing, the slow part does not process or transfer its
current buffer, then the DMA or processing advances to the next buffer to output into, which if not
available, the source buffer is dropped as though it had been empted by the transfer or DMA operation.

The buffer which is passed to the callback function is locked as long as the user application does not
return from the callback. When the callback returns the FastMotion Library unlocks the buffer making it
available for new data. The Depth of the ring buffers is settable up to the limit of available memory.

1.7 Memory Use
The FastMotion Library uses memory blocked from use by the host operating system. This is done by
telling the OS it can't use a block of memory, at the top of physical memory. On Windows this is done by
modifying the file c:\boot.ini which is a hidden system file. On Linux this is done with a boot parameter to
the loader.

The size of this memory block is determined by a user settable parameter called 'DMABUF_LENGTH'.

Note: The FastMotion Library is not the only program that uses this method of obtaining some contiguous
memory to do DMAs with. Several companies have used this method. Please be sure to check that the
block of memory is not being used by some other program.

1.8 API Functions of the FastMotion Library

AlfmlOpen

C Usage
int AlfmlOpen(char* filename, imdev_t* fgrab)

Arguments

filename A valid path and file name of the capture profile file.

fgrab A handle to the frame grabber if it exists. This handle
must be used in other library functions that refer to the
same session.

Description

This function attempts to find a frame grabber, to initialize it according the
selected capture profile file and to establish a communication link between the
frame grabber and the program.

Return Values:

11 of 47

On success, this function returns zero value and sets the fgrab variable to a valid
handle. On failure, this function returns an error code and sets the fgrab variable
to Null (zero). To get extended error information, call AlfmlGetLastError().

Example:
…
int iAlRes;
imdev_t fgrab;
…
iAlRes = AlfmlOpen(“c:\usr\alfast\lib\capture\eia.cap”, &fgrab);
if(!iAlRes)
{
 // ShowErrorMessage..
}

AlfmlClose

C Usage
void AlfmlClose(imdev_t fgrab)

Arguments

Fgrab A handle to the frame grabber that previously allocated
with AlfmlOpen() function.

Description

Releases control of the frame grabber. After calling this function the fgrab handle
is no longer valid.

AlfmlSetCallback

C Usage
int AlfmlSetCallback(imdev_t fgrab, void* Func, void* userData)

Arguments

fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Func Address of the callback function.

userData Pointer to a user structure that will be returned to the
user as a callback parameter.

Description

12 of 47

Connects a callback function that will be fired every time an event received from
the frame grabber is recieved. The event are received at the end of the buffer
and after acquiring every imagePerEvent images.

The callback function definition is
int AlfmlCallBack(int reason, void* userData, int imageIndex)

The reason variable can be one of
 AL_IMAGE_READY

 AL_GRAB_FINISHED

 AL_STDOUT

 AL_GRAB_TIMEOUT

If the reason is AL_IMAGE_READY, then 'imageIndex' is the index of the just
filled buffer in memory. Use AfmlGetImage to obtain an image pointer.

If the reason is AL_GRAB_FINISHED, then the cause of the call back was the
completion of a grab operation.

If the callback is AL_STDOUT, the userData pointer points to a string in memory,
which was printed to stdout by the frame grabber. These callbacks can contain
usefull diagnostics, but need not be processed for the library to operate correctly.

If the reason is AL_GRAB_TIMEOUT image data was not received from the
hardware within the timeout interval (10 seconds).

Example:
int MyCallBack(int reason, void* userPtr, int index)
{
 if(reason == AL_IMAGE_READY)
 {
 // new image grabbed
 }
 else if(reason == AL_GRAB_FINISHED)
 {
 // The buffer is full
 }
}

alfmlSetCollBack(fgrab, MyCallBack, userPtr);

AlfmlStartGrab

C Usage
int AlfmlStartGrab(imdev_t fgrab, int grabMode, int

imagesPerEvent, int skipCount)

Arguments

13 of 47

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

grabMode The type of acquisition to perform. Can be
GRAB_CONTINUOUS or GRAB_ONE_SHOT.

imagesPerEvent The number of images that are acquired before
calling the Callback function with ImageReady event.

skipCount The number of frames to skip between each acquired
image. A value of 0 acquires all the images.

Description

Starts a continuous acquisition. The grabMode parameter can have two values,
which are defined, at the library header file:

AL_GRAB_CONTINUOUS - The board grab images continuously and when it
reaches the end of the buffer, it continues placing the next image at the
beginning of the frame buffer.

AL_GRAB_ONE_SHOT - The board grabs images continuously and stops when
the frame buffer is full. At the end it generates an AL_GRAB_FINISHED event.

During the grabbing the frame grabber can produce events to notify the
application when new image is available. The value of the imagesPerEvent
parameter determines the number of frames the board acquired before
generating an event (AL_IMAGE_READY).

Return Values:

On success, this function returns zero value. On failure, this function returns an
error code. To get extended error information, call AlfmlGetLastError().

Example:
int iGrabRes;
iGrabRes = AlfmlStartGrab(fgrab, AL_GRAB_CONTINUOUS, 1, 0);
if(!iGrabRes)
{
 // ShowErrorMessage
}

AlfmlStopGrab

C Usage
int AlfmlStopGrab(imdev_t fgrab)

Arguments

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Description

14 of 47

Stops an acquisition in progress. Once this function stops an acquisition, you can
restart the acquisition with the AlfmlStartGrab() function.

Return Values:

On success, this function returns zero value. On failure, this function returns an
error code. To get extended error information, call AlfmlGetLastError().

After receiving the stop command, the frame grabber generates an
AL_GRAB_FINISHED event.

Example:
…
int iGrabRes;
iGrabRes = AlfmlStopGrab(fgrab);
if(!iGrabRes)
{
 // ShowErrorMessage
}

AlfmlGetImage

C Usage
image_t AlfmlGetImage(imdev_t fgrab, int imageIndex)

Arguments

fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

imageIndex The index of the image in the ring buffer.

Description

Returns an image from the ring acquisition buffer. Use this function to get access
to the grabbed images.

Return Values:

On success, this function returns a variable of type image_t. On failure, this
function returns NULL.

Example:

image_t img;
int iLast;

iLast = AlfmlGetLastImageIndex(fgrab);
img = AlfmlGetImage(fgrab, iLast);

AlfmlGetLastImageIndex

C Usage

15 of 47

int AlfmlGetLastImageIndex(imdev_t fgrab)

Arguments

fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Description

Returns the index in the frames ring buffer of the last grabbed image.

Return Values:

Index of the last grabbed image.

Example:

image_t img;
int iLast;

iLast = AlfmlGetLastImageIndex(fgrab);
img = AlfmlGetImage(fgrab, iLast);

AlfmlGetFramesCount

C Usage
int AlfmlGetFramesCount(imdev_t fgrab)

Arguments

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Description

Returns the number of frames grabbed since the start of an acquisition.

AlfmlGetBufferSize

C Usage
int AlfmlGetBufferSize(imdev_t fgrab)

Arguments

16 of 47

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Description
Returns the number of frames allocated at the ring buffer.

AlfmlSetChannel

C Usage
int AlfmlSetChannel(imdev_t fgrab, int inputChannel)

Arguments

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

inputChannel Selected input channel.

Description

Selects one of the video inputs to be active. The first channel is 0 and the last
channel is according to the specified board been used. The default channel after
calling AlfmlOpen() is channel 0.

Return Values:

On success, this function returns zero value. On failure, this function returns an
error code. To get extended error information, call AlfmlGetLastError().

AlfmlGetLastError

C Usage
int AlfmlGetLastError(imdev_t fgrab)

Arguments

fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Description

Returns the error code of the last FastMotion Library function executed.

Return Values:

This function returns the last error code and 0 if there is no pending error.

AlfmlGetErrorStr

17 of 47

C Usage
AlfmlGetErrorStr(int errorCode, char* errStr)

Arguments

errorCode A valid handle to the board previously allocated with
AlfmlOpen() function.

errStr A storage for error message text.

Description

This function returns the error text corresponding to an error code. The caller
must allocate a minimum of 64 bytes for message storage before calling this
function.

Return Values:

18 of 47

3. FAST-X UXGA FUNCTIONS

The Fast-X with the UXGA option has two additional functions in the AFML
interface as well as several different functions supported by the firmware loaded
by the FastMotion Library.

1.9 API Functions of the FastMotion UXGA Option Library

AlfmlGetFlag

C Usage
unsigned long AlfmlGetFlag (imdev_t fgrab, int cpu, int reg)

Arguments

Fgrab A valid handle to the board previously allocated with
AlfmlOpen() function.

Cpu The CPU instance number in a multi-CPU application.
Set this parameter to zero in most cases.

Reg A storage for error message text.

Description

This function returns the contents of the 'Flag' register present in the UXGA
version of the firmware. The registers contain diagnostic information about the
internal functions of the firmware. There are 10 registers numbered 0 to 9.
Providing an incorrect register number will return 0xBADDF00D, These Flag
registers can change with revision of the software, so do not depend on the
retaining any useful content.

Return Values:

This function returns the contents of the 'Flag' register present in the UXGA
version of the firmware.

The registers contain:

19 of 47

Reg # Contents

0 The write index of the shared memory area in host
memory

1 The read index of the shared memory area in host
memory

2 The write index of the internal buffer ring, which
was last filled by the hardware.

3
The read index of the internal buffer ring, which

was last started to DMA to the host shared
memory area.

4
Time in microseconds sense the last interrupt

from the hardware transferring an image into the
board memory.

5
Time from the last interrupt to when the deferred
procedure call completed processing the buffer

for channel 0

6
Time from the last interrupt to when the deferred
procedure call completed processing the buffer

for channel 1

7 Last line number in the source code being
executed.

8 Physical address of the shared memory area in
host memory.

9 The offset from the base of SRAM area in the on
board processor, to the control structure.

AlfmlSendCommand

C Usage
int AlfmlGetFlag (imdev_t fgrab, int cmd, int len, void *d)

Arguments

20 of 47

fgrab A valid handle to the board previously
allocated with AlfmlOpen() function.

cmd Enum value defining the command being
sent to the board.

len Length of parameter data pointed to by the
void pointer 'd'

d Void pointer to parameter data.

Description

This function is provided for informational /diagnostic reasons, but it is an internal
API not intended to be used by user applications. This function sends a
command message to the processor on the target board (or boards) as
determined by the enum value of 'cmd'. The command can also have parameter
data which is provided for by the remaining arguments. The functionality of the
commands are subject to change as this is an internal function.

Return Values:

This function returns zero if the message was sent successfully, non-zero if it
was not sent successfully.

1.10 Command Summary
The commands and parameters in the UXGA firmware are:

Cmd # Contents

256 Select a channel. (0 or 1)

257 Update trigger settings. Not used by the UXGA
option.

258 Select production of a focus image. Not used by
the UXGA option.

259

Enable capturing. The following are the 'long'
parameters:

Grab mode (1=one shot 2=continuous)

ImagesPerInterrupt (usually set to 0, or one image
per evt)

Skip (usually 0, give every image, 1 give every other
image)

21 of 47

260 Cause the firmware to exit. Crash the program.

261
Stop Capture. Parameter:
When (0=now, nz=when post trigger count
expires)

262

Draw digits of two counters on image. Parameter
Stop (0=stop 1=do it)
The two numbers are a time in microseconds,
and a frame index. Only on simulated image data.

263
Make simulated images.
Stop (0=stop 1=do it)

264 Trigger now. Stop capture after post trigger
count expires.

265 Sent by firmware when images are not coming
into the board.

266 Diagnostic message sent by board.

267 Re-arm the trace buffer in the FPGA

268
Adjusts the clock phase on the DMA channel
from the FPGA to the Stretch. Parameter -8 to +8.
Should be -4. Don't mess with this.

269
Set the serial baud rate.
Parameter selects the channel (0 or 1)

270
Adjust the PLL divisor of the AD9888s
P1=Channel (0=ch0 1=ch1 2 -1=both)
P2=divisor (minus 1) see the AD9888 data sheet

271

Adjust the clock phase AD9888s on the UXGA
board.
P1=Channel (0=ch0 1=ch1 2 -1=both)
P2=phase range is 0 to 31.

272

Change the input MUX setting for the selected
channel.
P1=Channel (0=ch0 1=ch1 2 -1=both)
P2=setting (0=A 1=B 2=Off)

273
Set the PLL current of AD9888s
P1=Channel (0=ch0 1=ch1 2 -1=both)

22 of 47

P2=setting

274
Set the PLL range of AD9888s
P1=Channel (0=ch0 1=ch1 2 -1=both)
P2=setting

4. UXGA CAPTURE CONTROL FILE CONTENT
The operation of the UXGA interface and the firmware has many parameters which are stored in an
editable file. This file is called a capture control file '.cap'. The format of the file is much like a Windows INI
file. A modification to the format is the inclusion of data type flags before the actual value of the
parameter.

--
Example of a small Cap control file

[Stretch] # Section name
np = int 1 # Number of processors
select0 = int 1 # use this processor (0)
prog0 = string "uxgaFastX.exe" # file to load

[PLL] # next section
PllPhase = int -4

The format is a section header between two square brackets '[' or ']'. The section name should be less
than 64 characters, the case is important. After a section header is a number of lines containing
parameters and values. The format of a parameter line is the parameter name which is limited to 64
characters, followed by an equal size ('='), followed by one of the type flags 'int', 'float', or 'string'.
Followed by the value, which must be less than 64 characters.

The capture file format also supports include files. The parameter '!include' by the file name, will cause
the file to be read and processed. The number of levels of include supported is large, limited by the size
of the stack.

The capture file format also supports conditional processing delimiters, '!if', '!else' and '!endif'. The token
following the '!if' can be '0' or '1'.

Finally a comment token '#' provided. Characters from the '#' to the end of the line are ignored. DO NOT
use the // as a comment character it causes big problems.

The capture file constructs a tree in memory with the root pointing to a linked list of section headers,
which point to linked lists of parameters with their values. This structure is queried by the host software
(alfml.dll) and by the board firmware. Some section headers may not apply to a particular board type.
(Yes this was created before XML…)

Capture control files use the extent '.cap' but this is not required, they can have any file name.

1.11 [Stretch] Section

23 of 47

This section informs the FastMotion Library which processor to load with what firmware. Firmware is
matched to the options on the board. Typically this is not edited by a user.

1.11.1 np = int 1
Number of processors in application. Normally this is one.

1.11.2 select0 = int 1
This parameter selects whether a processor is included in the set controlled by FastMotion Library. The
digit at the end of the parameter selects which processor, the value selects if this processor is to be used.

1.11.3 prog0 = string "uxgaFastX.exe"
The parameter selects which firmware to load to the board. Firmware is matched to the options on the
board. Typically this is not edited by a user.

1.11.4 [FastMotion] Section
This section is descriptive and does not effect the operation of the hardware or software. This section is
used by Fast Motion Application and is not used by the FastMotion Library.

1.11.5 CameraName = string "Fx-sxga-60"
Camera model name.

1.11.6 frame0 = string "1280,1024,60"
The width, height, and frame rate of the camera.

1.11.7 line0 = string "1280x1024x24@60"
This is displayed in the selection dialog.

1.11.8 line1 = string "Fast-X"
This is displayed in the selection dialog.

1.11.9 DISPLAY_SHIFT = int 0
This is used to shift the pixel values before they are displayed. Positive numbers mean left shift, negative
numbers mean right shift. This is used by the application to select which bits are used to display an
image.

1.11.10 SIMULATE = int 0
This parameter controls various simulation functions in the various firmware. Typical it causes the
firmware to generate images without a camera, to test the setup.

1.11.11 ANNOTATE = int 0
This parameter controls if text is written to the image with various types of information. Typically the
firmware adds a frame number and a time.

1.11.12 INPUT_CHANNELS = int 2
This parameter tells the Fast Motion Application how many channels are present in the current
configuration.

1.12 [PLL] Section

24 of 47

1.12.1 PLL_CONTROL = int -4
This parameter tunes the clock phase on the 200 MHz data channel between the FPGA and the Stretch
processor. Do not change this.

1.13 [BUFFER.1] Section
The Ping Pong settings should be used in applications which require images from more than one channel
or mux setting. Ping Pong reduces the bandwidth to that of a single channel by alternating channels
which are sampled. The alternation is done in a way that the time it takes for the AD9888 PLL to re-sync
is masked by the other channel. To take images from all the inputs set Ping Pong Mux and Channel.

NOTE: IF A CHANNEL DOES NOT HAVE INPUT THE PING PONG WILL STOP ON THAT CHANNEL
WAITING FOR A FRAME. BE SURE ALL THE SELECTABLE CHANNELS HAVE VIDEO INPUT.

1.13.1 PING_PONG_CHANNEL = int 0
This parameter informs the UXGA firmware to switch back a forth between channel 1 and 2. This is used
for monitoring applications to get data from many channels as fast as possible.

1.13.2 PING_PONG_MUX = int 0
This parameter informs the UXGA firmware to switch through the input multiplexer channels for channel
0.

1.14 [BUFFER.2] Section

1.14.1 PING_PONG_MUX = int 0
This parameter informs the UXGA firmware to switch through the input multiplexer channels for channel
2.

1.15 [AFML] Section
This section defines the size and kind of image the host would like to obtain from the board(s). In many
applications this is not free to be changed. The format of the image must be RGB24 for the UXGA option.
The size of the image can change to match the size of the video source.

1.15.1 HOST_INPUT_PIXELS_PER_LINE = int 1280

1.15.2 HOST_INPUT_LINES_PER_BUFFER = int 1024

1.15.3 HOST_INPUT_TYPE = string RGB24

1.16 [UXGA.1] and [UXGA.2] Sections
This section controls the registers in the FPGA. The number at the end of the section name indicates the
channel that is affected by this section.

1.16.1 ENABLE = int 1
The enable bit control whether the channel will be used in this application.

25 of 47

1.16.2 START_PIXEL = int 358
WIDTH = int 1280
START_LINE = int 20
END_LINE = int 1043
These four parameters determine the ROI to be extracted from the input video. The value for the start
pixel is in clock after the leading edge of horizontal sync. The start line is the first line in the image which
has useful video. The end line parameter determines the last line that will be input from the image. The
start and end parameters include the line or pixel they select.

1.16.3 HS_ACTIVE_HI = int 1
VS_ACTIVE_LO = int 0
AUTO_POLARITY = int 1
These values control the polarity of the sync signals. If auto polarity is set the other two parameters are
ignored. Typically you should use auto polarity. Should auto polarity not perform as desired, the set it to
zero, and select the polarity with the other two parameters. Note that the parameters name what the
value 1 will select. So HS_ACTIVE_HI if one selects an active high HSYNC. Note that the two
parameters HS_ACTIVE_HI and VS_ACTIVE_LO have opposite sense. For example if both syncs are
active low then HS_ACTIVE_HI is zero and VS_ACTIVE_HI is one.

1.16.4 INTERLACE = int 0
The interlace bit informs the FPGA that the input video is 2:1 interlaced. Note the ROI settings DO NOT
change if the input is interlaced. The FPGA takes care of the even odd line counting.

1.16.5 CAPTURE_ENABLE = int 1
This bit enables video to be captured by the FPGA. Setting this to zero will prevent video from being
captured on the selected channel, but the channel will be setup and ready to do it if the capture bit is
changed.

1.16.6 MONOCHROME = int 0
The monochrome bit causes the FPGA to only use the green input. The red and blue inputs will be
ignored. The image in memory will be a GREY8 image rather than a RGB24 image.

1.16.7 USEBUFFER1 = int 1
USEBUFFER2 = int 1
These two bits control the buffer management. Both of these should be set to one.

1.16.8 IGNORE_STRIDE = int 0
This bit causes the DMA engine to do a linear DMA and not step to the next line start, at the end of a line.
This should be zero.

1.17 [Capture.1] and [Capture.2] Sections
These two sections define the input image to the firmware running on the board. These values are used
to program the hardware, and define what is to be expected in memory when the hardware finishes a
DMA.

1.17.1 NUMBER_OF_BUFFERS = int 4
This defines the number of buffers to be used in the input circular chain of buffers. This is typically not
changed.

26 of 47

1.17.2 INPUT_PIXELS_PER_LINE = int 1280
As the name says.

1.17.3 INPUT_LINES_PER_BUFFER = int 1024
This should be set to greater than (+1 or more) the number of lines in the image. If the value is too small
a partial image will be captured, with the balance spilling into the next buffer.

1.17.4 INPUT_XOFFSET = int 0
INPUT_YOFFSET = int 0
The value determines which line and pixel is the line that has useful image data. These are not the same
values as those in the UXGA section, but apply to the image as provided by the hardware. This allows
you to select a smaller area of the image to be transferred to the host.

1.17.5 INPUT_NX = int 1280
INPUT_NY = int 1024
This value determines the width and height of the ROI being extracted from the image in memory.
Typically these match the ROI settings of the UXGA section.

1.17.6 INPUT_PIXEL_SIZE = int 3
This is the number of bytes in the pixel. It should be 3 or in the monochrome case it should be 1.

1.17.7 INPUT_PIXEL_TYPE = string RGB24
This field determines the format of the pixel. RGB24 means LSB is red, middle byte is green and the MSB
is blue. This field is GREY8 for the monochrome case.

1.18 [AD9888B.1 and [AD9888B.2] Sections
The fields in this section define the register values to be programmed in the AD9888. One set of values
for each AD9888. It is beyond the scope of this document to explain all these settings please refer to the
Analog Devices data sheet for the AD9888B. These settings are important to the quality of the resulting
images, and will required adjustment for different video sources. Typically you should only need to
change the first four values to match your video source. For better color matches adjust the red, green
and blue gains and offsets.

These values are example values taken from a 1280x1024 @ 60 Hz Toshiba laptop setting.

PLLDIV = int 1686
Range = int 2
Current = int 4
Phase = int 16
ClampLoc = int 16
ClampDur = int 64
HsyncWidth = int 112
RedGain = int 128
GreenGain = int 128
BlueGain = int 128
RedOffset = int 128
GreenOffset = int 128
BlueOffset = int 128
VsyncOutSource = int 0
VsyncOverride = int 0
VsyncOutInvert = int 0
HsyncInSource = int 0
HsyncOverride = int 0
HsyncOutInvert = int 0
HsyncInInvert = int 0
HsyncPolOverride = int 0
PowerUp = int 1
PowerMode = int 0
CoastPolarity = int 0
CoastOverride = int 0
Coast Select = int 1
Clamp Polarity = int 0
Clamp Source = int 0
MustBeOne = int 1
BlueClamp = int 0
RedClamp = int 0
SyncOnGreenThreshold = int 15
SyncSeparatorThreshold = int 32
PreCoast = int 0
PostCoast = int 0
ExternalClock = int 0
InputBandwidth = int 3
InputMux = int 0
Format422 = int 0
ABInvert = int 0
OutputMode = int 1
ChannelMode = int 1
MustBeZero = int 0
MustBeOnes = int -1

5. THE AD9888 REGISTERS
The AD9888 is initialized and controlled by a set of registers that determine the operating modes. An
external controller is employed to write and read the Control Registers through the 2-line serial interface
port (I squared C). The information in this section is abstracted from the Analog Devices data sheet. You
should obtain a copy of this data sheet. Search for AD9888 on Google.

28 of 47

29 of 47

30 of 47

AD9888 CONTROL REGISTER DETAIL

1.19.1 Reg[OO] Bit(s)[7-O] Chip Revision
Register 00 is an 8-bit register that represents the silicon revision.

Revision 0 = 0000 0000,

Revision 1 = 0000 0001.

1.19.2 PLL DIVIDER CONTROL

1.19.3 Reg[O1] Bit(s)[7-O] PLL Divide Ratio MSBs
The eight most significant bits of the 12-bit PLL divide ratio PLLDIV. (The operational divide ratio is
PLLDIV + 1.) The PLL derives a master clock from an incoming Hsync signal. The master clock
frequency is then divided by an integer value, such that the output is phase-locked to Hsync. This PLLDIV
value determines the number of pixel times (pixels plus horizontal blanking overhead) per line. This is
typically 20% to 30% more than the number of active pixels in the display. The 12-bit value of the PLL
divider supports divide ratios from 2 to 4095. The higher the value loaded in this register, the higher the
resulting clock frequency with respect to a fixed Hsync frequency. VESA has established standard timing
specifications that will assist in determining the value for PLLDIV as a function of horizontal and vertical
display resolution and frame rate (Table IV). However, many computer systems do not conform precisely
to the recommendations, and these numbers should be used only as a guide. The display system
manufacturer should provide automatic or manual means for optimizing PLLDIV. An incorrectly set

31 of 47

PLLDIV will usually produce one or more vertical noise bars on the display. The greater the error, the
greater the number of bars produced. The power-up default value of PLLDIV is 1693 (PLLDIVM = 69H,
PLLDIVL = DxH). The AD9888 updates the full divide ratio only when the LSBs are changed. Writing to
this register by itself will not trigger an update.

1.19.4 Reg[O2] Bit(s)[7-4] PLL Divide Ratio LSBs
The four least significant bits of the 12-bit PLL divide ratio PLLDIV. The operational divide ratio is PLLDIV
+ 1. The power-up default value of PLLDIV is 1693 (PLLDIVM = 69H, PLLDIVL = DxH). The AD9888
updates the full divide ratio only when this register is written to.

1.19.5 CLOCK GENERATOR CONTROL

1.19.6 Reg[O3] Bit(s)[7-6] VCO Range Select
Two bits that establish the operating range of the clock generator. VCORNGE must be set to correspond
with the desired operating frequency (incoming pixel rate). The PLL gives the best jitter performance at
high frequencies. For this reason, in order to output low pixel rates and still get good jitter performance,
the PLL actually operates at a higher frequency but then divides down the clock rate afterwards. Table VI
shows the pixel rates for each VCO range setting. The PLL output divisor is automatically selected with
the VCO range setting. The power-up default value is 01.

VCORNGE Pixel Rate Range

00 10 - 41 MHz

01 41 - 82 MHz

10 82 - 150 MHz

11 >150 MHz

1.19.7 Reg[O3] Bit(s)[5-3] Charge Pump Current
Three bits that establish the current driving the loop filter in the clock generator. CURRENT must be set
to correspond with the desired operating frequency (incoming pixel rate). The power-up default value is
CURRENT = 001.

Table VII. Charge Pump Currents

Range Current (µA)

000 50

001 100

010 150

011 250

100 350

101 500

110 750

32 of 47

111 1500

1.19.8 Reg[O4] Bit(s)[7-3] Clock Phase Adjust
Register 04 bits 7 to 3 is a 5-bit value that adjusts the sampling phase in 32 steps across one pixel time.
Each step represents an 11.25° shift in sampling phase. The power-up default value is 16.

1.19.9 CLAMP TIMING

1.19.10 Reg[O5] Bit(s)[7-O] Clamp Placement
Register 05 is an 8-bit register that sets the position of the internally generated clamp. When the external
clamp control bit is set to 0, a clamp signal is generated internally, at a position established by the clamp
placement and for a duration set by the clamp duration. Clamping is started (Clamp Placement) pixel
periods after the trailing edge of Hsync. The clamp placement may be programmed to any value up to
255, except 0. The clamp should be placed during a time that the input signal presents a stable black-
level reference, usually the back porch period between Hsync and the image. When the external clamp
control bit is set to 1, this register is ignored.

1.19.11 Reg[O6] Bit(s)[7-O] Clamp Duration
Register 06 is an 8-bit register that sets the duration of the internally generated clamp. When the external
clamp control bit is set to 0, a clamp signal is generated internally, at a position established by the clamp
placement and for a duration set by the clamp duration. Clamping is started (Clamp Placement) pixel
periods after the trailing edge of Hsync, and continues for (Clamp Duration) pixel periods. The clamp
duration may be programmed to any value between 1 and 255. A value of 0 is not supported. For the best
results, the clamp duration should be set to include the majority of the black reference signal time that
follows the Hsync signal trailing edge. Insufficient clamping time can produce brightness changes at the
top of the screen, and a slow recovery from large changes in the Average Picture Level (APL), or
brightness. When the external clamp control bit is set to 1, this register is ignored.

1.19.12 HSYNC PULSE WIDTH

1.19.13 Reg[O7] Bit(s)[7-O] Hsync Output Pulse width
Register 07 is an 8-bit register that sets the duration of the Hsync output pulse.

The leading edge of the Hsync output is triggered by the internally generated, phase adjusted PLL
feedback clock. The AD9888 then counts a number of pixel clocks equal to the value in this register. This
triggers the trailing edge of the Hsync output, which is also phase adjusted.

1.19.14 INPUT GAIN

1.19.15 Reg[O8] Bit(s)[7-O] Red Channel Gain Adjust
Register 08 is an 8-bit word that sets the gain of the RED channel. The AD9888 can accommodate input
signals with a full-scale range of between 0.5 V and 1.0 V p-p. Setting REDGAIN to 255 corresponds to
an input range of 1.0 V. A REDGAIN of 0 establishes an input range of 0.5 V. Note that increasing
REDGAIN results in the picture having less contrast (the input signal uses fewer of the available
converter codes). See Figure 2.

1.19.16 Reg[O9] Bit(s)[7-O] Green Channel Gain Adjust
An 8-bit word that sets the gain of the GREEN channel. See REDGAIN (08).

1.19.17 Reg[OA] Bit(s)[7-O] Blue Channel Gain Adjust
An 8-bit word that sets the gain of the BLUE channel. See REDGAIN (08).

33 of 47

1.19.18 INPUT OFFSET

1.19.19 Reg[OB] Bit(s)[7-1] Red Channel Offset Adjust
A 7-bit offset binary word that sets the dc offset of the RED channel. One LSB of offset adjustment equals
approximately one LSB change in the ADC offset. Therefore, the absolute magnitude of the offset
adjustment scales as the gain of the channel is changed. A nominal setting of 63 results in the channel
nominally clamping the back porch (during the clamping interval) to code 00. An offset setting of 127
results in the channel clamping to code 64 of the ADC. An offset setting of 0 clamps to code –63 (off the
bottom of the range). Increasing the value of Red Offset decreases the brightness of the channel.

1.19.20 Reg[OC] Bit(s)[7-1] Green Channel Offset Adjust
A 7-bit offset binary word that sets the dc offset of the GREEN channel. See REDOFST (0B).

1.19.21 Reg[OD] Bit(s)[7-1] Blue Channel Offset Adjust
A 7-bit offset binary word that sets the dc offset of the BLUE channel. See REDOFST (0B).

1.19.22 Reg[OE] Bit(s)[7] Hsync Input Polarity Override
This register is used to override the internal circuitry that determines the polarity of the Hsync signal going
into the PLL.

Table VIII. Hsync Input Polarity Override Settings

Override Bit Result

0 Hsync Polarity Determined by Chip

1 Hsync Polarity Determined by
User

The default for Hsync polarity override is 0 (polarity determined by chip).

1.19.23 Reg[OE] Bit(s)[6] HSPOL Hsync Input Polarity
A bit that must be set to indicate the polarity of the Hsync signal that is applied to the PLL Hsync input.

Table IX. Hsync Input Polarity Settings

HSPO
L

Function

0 Active Low

1 Active
High

Active Low means the leading edge of the Hsync pulse is negative-going. All timing is based on the
leading edge of Hsync, which is the falling edge. The rising edge has no effect. Active High means the
leading edge of the Hsync pulse is positive-going. This means that timing will be based on the leading
edge of Hsync, which is now the rising edge. The device will operate if this bit is set incorrectly, but the
internally generated clamp position, as established by Clamp Placement (Register 05H), will not be
placed as expected, which may generate clamping errors. The power-up default value is HSPOL = 1.

1.19.24 Reg[OE] Bit(s)[5] Hsync Output Polarity
One bit that determines the polarity of the Hsync output and the SOG output. Table X shows the effect of
this option. SYNC indicates the logic state of the sync pulse. The default setting for this register is 0.

Table X. Hsync Output Polarity Settings

34 of 47

Setting SYNC

0 Logic 1 (Positive Polarity)

1 Logic 0 (Negative Polarity)

1.19.25 Reg[OE] Bit(s)[4] Active Hsync Override
This bit is used to override the automatic Hsync selection. To override, set this bit to Logic 1. When
overriding, the active Hsync is set via Bit 3 in this register. The default for this register is 0.

Table XI. Active Hsync Override Settings

Override Result

0 Auto determines the active interface.

1 Override, Bit 3, determines the active interface

1.19.26 Reg[0E] Bit(s)[3] Active Hsync Select
This bit is used under two conditions. It is used to select the active Hsync when the override bit is set (Bit
4). Alternately, it is used to determine the active Hsync when not overriding but both Hsyncs are detected.
The default for this register is 0.

Table XII. Active Hsync Select Settings

Select Result

0 Hsync Input

1 Sync-on-Green Input

1.19.27 Reg[0E] Bit(s)[2] Vsync Output Invert
A bit that inverts the polarity of the Vsync output. Table XIII shows the effect of this option. The default
setting for this register is 0.

Table XIII. Vsync Output Polarity Settings

Setting SYNC

0 Invert

1 Don't Invert

1.19.28 Reg[0E] Bit(s)[1] Active Vsync Override
This bit is used to override the automatic Vsync selection. To override, set this bit to Logic 1. When
overriding, the active interface is set via Bit 0 in this register. The default for this register is 0.

Table XIV. Active Vsync Override Settings

Override Result

0 Auto determines the active Vsync.

1 Override, Bit 0 determines the active Vsync.

35 of 47

1.19.29 Reg[0E] Bit(s)[0] Active Vsync Select
This bit is used to select the active Vsync when the over ride bit is set (Bit 1). The default for this register
is 0.

Table XV. Active Vsync Select Settings

Select Result

0 VSYNC Input

1 Sync Separator output

1.19.30 Reg[0F] Bit(s)[7] Clamp Input Signal Source
A bit that determines the source of clamp timing. A 0 enables the clamp timing circuitry controlled by
clamp placement and clamp duration. The clamp position and duration is counted from the trailing edge
of Hsync. A 1 enables the external CLAMP input pin. The three channels are clamped when the CLAMP
signal is active. The polarity of CLAMP is determined by the Clamp Polarity bit (Register 0FH, Bit 6). The
power-up default value is External Clamp = 0.

Table XVI. Clamp Input Signal Source Settings

External
Clamp

Function

0 Internally Generated Clamp

1 Externally Provided Clamp Signal

1.19.31 Reg[0F] Bit(s)[6] Clamp Input Signal Polarity
A bit that determines the polarity of the externally provided CLAMP signal.

Table XVII. Clamp Input Signal Polarity Settings

Clamp Polarity Function

0 Active Low

1 Active
High

A Logic 1 means the circuit will clamp when CLAMP is Low, and pass the signal to the ADC when
CLAMP is high. A Logic 0 means the circuit will clamp when CLAMP is High, and pass the signal to the
ADC when CLAMP is low. The power-up default value is Clamp Polarity = 1.

1.19.32 Reg[0F] Bit(s)[5] COAST Select
This bit is used to select the active coast source. The choices are the coast input pin or Vsync. If Vsync is
selected, the additional decision of using the Vsync input pin or the output from the sync separator needs
to be made (Register 0EH, Bits 1, 0). The default for this register is 0.

Table XVIII. COAST Source Selection Settings

Select Result

0 Coast Input

1 Vsync per Reg 0E bits 1-9

36 of 47

1.19.33 Reg[0F] Bit(s)[4] COAST Input Polarity Override
This register is used to override the internal circuitry that determines the polarity of the coast signal going
into the PLL.

Table XIX. COAST Input Polarity Override Settings

Override Result

0 COAST Polarity Determined by Chip

1 COAST Polarity Determined by User

1.19.34 Reg[OF] Bit(s)[3] COAST Input Polarity
A bit to indicate the polarity of the COAST signal that is applied to the PLL COAST input. Active LOW
means that the clock generator will ignore Hsync inputs when COAST is low, and continue operating at
the same nominal frequency until COAST goes high. Active High means that the clock generator will
ignore Hsync inputs when COAST is high, and continue operating at the same nominal frequency until
COAST goes low. This function needs to be used along with the COAST polarity override bit (Bit 4). The
power-up default value is CSTPOL = 1.

Table XX. COAST Input Polarity Settings

CSTPOL Function

0 Active Low

1 Active
High

1.19.35 Reg[OF] Bit(s)[2] Seek Mode Override
This bit is used to either allow or disallow the low power mode. The low power mode (seek mode) occurs
when there are no signals on any of the Sync inputs. The default for this register is 1.

Table XXI. Seek Mode Override Settings

Select Result

0 Disallow Seek Mode

1 Allow Seek Mode

1.19.36 Reg[OF] Bit(s)[1] PWRDN
This bit is used to put the chip in power-down mode. In this mode, the chip’s power dissipation is reduced
to a fraction of the typical power (see the Electrical Characteristics table for exact power dissipation).
When in power- down, the HSOUT, VSOUT, DATACK, DATACK, and all 48 of the data outputs are put
into a high impedance state. (Note: the SOGOUT output is not put into high impedance.) Circuit blocks
that continue to be active during power-down include the voltage references, sync processing, sync
detection, and the serial register. These blocks facilitate a fast startup from power-down. The default for
this register is 1.

Table XXII. Power-Down Settings

Select Result

0 Power Down

1 Normal Operation

37 of 47

1.19.37 Reg[1O] Bit(s)[7-3] Sync-on-Green Slicer Threshold
This register allows the comparator threshold of the Sync- on-Green slicer to be adjusted. This register
adjusts it in steps of 10 mV, with the minimum setting equal to 10 mV and the maximum setting equal to
330 mV. The default setting is 15 and corresponds to a threshold value of 0.16 V.

1.19.38 Reg[1O] Bit(s)[2] Red Clamp Select
A bit that determines whether the red channel is clamped to ground or to mid-scale. For RGB video, all
three channels are referenced to ground. For YcbCr (or YUV), the Y channel is referenced to ground, but
the CbCr channels are referenced to mid-scale. Clamping to mid-scale actually clamps to Pin 9. The
default setting for this register is 0.

Table XXIII. Red Clamp Select Settings

CSTPOL Function

0 Clamp to ground

1 Clamp to mid scale (pin
9)

1.19.39 Reg[1O] Bit(s)[1] Blue Clamp Select
A bit that determines whether the blue channel is clamped to ground or to midscale. Clamping to
midscale actually clamps to Pin 24. The default setting for this register is 0.

Table XXIV. Blue Clamp Select Settings

Select Function

0 Clamp to ground

1 Clamp to mid scale (pin
24)

1.19.40 Reg[11] Bit(s)[7-O] Sync Separator Threshold
This register is used to set the responsiveness of the sync separator. It sets how many internal 5 MHz
clock periods the sync separator must count to before toggling high or low. It works like a low-pass filter
to ignore Hsync pulses in order to extract the Vsync signal. This register should be set to some number
greater than the maximum Hsync pulse width. Note: the sync separator threshold uses an internal
dedicated clock with a frequency of approximately 5 MHz. The default for this register is 32.

1.19.41 Reg[12] Bit(s)[7-O] Pre-COAST
This register allows the COAST signal to be applied prior to the Vsync signal. This is necessary in cases
where pre- equalization pulses are present. The step size for this control is one Hsync period. The default
is 0.

1.19.42 Reg[13] Bit(s)[7-O] Post-COAST
This register allows the COAST signal to be applied following to the Vsync signal. This is necessary in
cases where post-equalization pulses are present. The step size for this control is one Hsync period. The
default is 0.

1.19.43 Reg[14] Bit(s)[7] Hsync Detect
This bit is used to indicate when activity is detected on the selected Hsync input pin. If HSYNC is held
high or low, activity will not be detected. The sync processing block diagram shows where this function is
implemented.

Table XXV. Hsync Detection Results

38 of 47

Detec
t

Function

0 No Activity
Detected

1 Activity Detected

1.19.44 Reg[14] Bit(s)[6] AHS – Active Hsync
This bit indicates which Hsync input source is being used by the PLL (Hsync input or Sync-on-Green).
Bits 7 and 1 in this register are what determine which source is used. If both Hsync and SOG are
detected, the user can determine which has priority via Bit 3 in register 0EH. The user can override this
function via Bit 4 in Register 0EH. If the override bit is set to Logic 1, then this bit will be forced to
whatever the state of Bit 3 in Register 0EH is set to. AHS = 0 means use the HSYNC pin input for
HSYNC. AHS = 1 means use the SOG pin input for HSYNC. The override bit is in Register 0EH, Bit 4.

Table XXVI. Active Hsync Results

Bit 7
(Hsync Detect)

Bit 1
(SOG Detect)

Bit 4 Reg 0E
(Override)

AHS

0 0 0 Bit 3 in OEh

0 1 0 1

1 0 0 0

1 1 0 Bit 3 in 0Eh

X X 1 Bit 3 in 0Eh

1.19.45 Reg[14] Bit(s)[5] Detected Hsync Input Polarity Status
This bit reports the status of the HSYNC input polarity detection circuit. It can be used to determine the
polarity of the HSYNC input. The detection circuit’s location is shown in the Sync Processing Block
Diagram (Figure 25).

Table XXVII. Detected Hsync Input Polarity Status

Hsync Polarity Status Function

0 Hsync in
negative

1 Hsync is positive

1.19.46 Reg[14] Bit(s)[4] Vsync Detect
This bit is used to indicate when activity is detected on the selected Vsync input pin. If Vsync is held high
or low, activity will not be detected. The sync processing block diagram (Figure 25) shows where this
function is implemented.

Table XXVIII. Vsync Detection Results

Detec
t

Function

0 No Activity
Detected

1 Activity Detected

39 of 47

1.19.47 Reg[14] Bit(s)[3] AVS – Active Vsync
This bit indicates which Vsync source is being used; the Vsync input or the output from the sync
separator. Bit 4 in this register is what determines which is active. If both Vsync and SOG are detected,
the user can determine which has priority via Bit 0 in Register 0EH. The user can override this function
via Bit 1 in Register 0EH. If the override bit is set to Logic 1, this bit will be forced to whatever the state of
Bit 0 in Register 0EH is set to. AVS = 1 means Sync separator. AVS = 0 means Vsync input. The override
bit is in register 0Eh, Bit 1.

Table XXIX. Active Vsync Results

Bit 5 (Vsync Detect) Override AVS

0 0 1

1 0 0

X 1 Bit 0 in 0Eh

1.19.48 Reg[14] Bit(s)[2] Detected Vsync Output Polarity Status
This bit reports the status of the Vsync output polarity detection circuit. It can be used to determine the
polarity of the Vsync input. The detection circuit’s location is shown in the sync processing block diagram
(Figure 25).

Table XXX. Detected Vsync Input Polarity Status

Vsync Polarity Status Result

0 Vsync Polarity is Active high

1 Vsync Polarity is active low

1.19.49 Reg[14] Bit(s)[1] Sync-on-Green Detect
This bit is used to indicate when Sync activity is detected on the selected Sync-on-Green input pin. The
Sync Processing Block Diagram (Figure 25) shows where this function is implemented.

Table XXXI. Sync-on-Green Detection Results

Detec
t

Function

0 No Activity
Detected

1 Activity Detected

1.19.50 Reg[14] Bit(s)[O] Detected COAST Polarity Status
This bit reports the status of the coast input polarity detection circuit. It can be used to determine the
polarity of the COAST input. The detection circuit’s location is shown in Figure 25.

Table XXXII. Detected COAST Input Polarity Status

Coast Polarity Status Result

0 Coast Polarity is Active Negative

1 Coast Polarity is active Positive

1.19.51 MODE CONTROL

1.19.52 Reg[15] Bit(s)[7] Channel Mode
A bit that determines whether all pixels are presented to a single port (A), or alternating pixels are de-
multiplexed to Ports A and B. When DEMUX = 0, Port B outputs are in a high impedance state. The

40 of 47

maximum data rate for single-port mode is 110 MHz. The timing diagrams starting with Figure 13 show
the effects of this option. The power-up default value is 1.

Table XXXIII. Channel Mode Settings

DEMUX Function

0 All the data goes to port A

1 Alternate pixels go to port B

1.19.53 Reg[15] Bit(s)[6] Output Mode
A bit that determines whether all pixels are presented to Port A and Port B simultaneously on every
second DATACK rising edge, or alternately on Port A and Port B on successive DATACK rising edges.
When in single port mode (DEMUX = 0), this bit is ignored. The timing diagrams (Figure 17) show the
effects of this option. The power-up default value is PARALLEL = 1.

Table XXXIV. Output Mode Settings

PARALLEL Function

0 Data is interleaved

1 Data is simultaneous on every other data clock.

1.19.54 Reg[15] Bit(s)[5] Output Port Phase
One bit that determines whether even pixels or odd pixels go to Port A. In normal operation (OUTPHASE
= 0) when operating in dual-port output mode (DEMUX = 1), the first sample after the Hsync leading edge
is presented at Port A. Every subsequent ODD sample appears at Port A. All EVEN samples go to Port B.
When OUTPHASE = 1, these ports are reversed and the first sample goes to Port B. When DEMUX = 0,
this bit is ignored as data always comes out of only Port A.

Table XXXV. Output Port Phase Settings

OUTPHASE First Pixel after Hsync

0 Port A

1 Port B

1.19.55 Reg[15] Bit(s)[4] 4:2:2 Output Mode Select
A bit that configures the output data in 4:2:2 mode. This mode can be used to reduce the number of data
lines used from 24 down to 16 for applications using YUV, YCbCr, or YPbPr graphics signals. A timing
diagram for this mode is shown in Figure 12. Recommended input and output configurations are shown in
Table XXXVII. In 4:2:2 modes, the red and blue channels can be interchanged to help satisfy board
layout or timing requirements, but the green channel must be configured for Y.

Table XXXVI. 4:2:2 Output Mode Select

Select Output Mode

0 4:4:4

1 4:2:2

Table XXXVII. 4:2:2 Input/Output Configuration

Channel Input Connection Output Format

Red V U/V

Green Y Y

41 of 47

Blue U Tristate

1.19.56 Reg[15] Bit(s)[3] Input Mux Control
A bit that selects either analog inputs from Channel 0 or the analog inputs from Channel 1.

Table XXXVIII. Input Mux Control

Control Channel Selected

0 Channel 0

1 Channel 1

1.19.57 Reg[15] Bit(s)[2-1] Analog Bandwidth Control
Two bits that select the analog bandwidth.

Table XXXIX. Analog Bandwidth Control

Bit 2 Bit 1 Analog BW

1 1 500 MHz

1 0 300 MHz

0 1 150 MHz

0 0 75 MHz

1.19.58 Reg[15] Bit(s)[O] External Clock Select
A bit that determines the source of the pixel clock. Logic 0 enables the internal PLL that generates the
pixel clock from an externally provided HSYNC. A Logic 1 enables the external CKEXT input pin. In this
mode, the PLL Divide Ratio (PLLDIV) is ignored. The clock phase adjust (PHASE) is still functional. The
power-up default value is EXTCLK = 0.

Table XL. External Clock Select Settings

EXTCLK Function

0 Internally Generated Clock

1 Externally Provided Clock Signal

6. EXAMPLE SETTINGS

42 of 47

For a video source that is 1280x1024 at 60 Hz frame rate, non-interlaced looking in the table above the
horizontal frequency is 64 kHz, and the dot clock is 108 MHz. The number of dot clocks in one line time is
108 MHz / 64 kHz = 1687.5 so we round down to 1687. Note the timing values published by display
adapter manufactures are often wrong because the adapter has been re-designed after the
documentation was written. You will always need to tune your settings to your video source. In this case
the actual pixel clock frequency may be wrong, and it is actually 107.968 MHz, or the horizontal
frequency is wrong and is actually 64,019 Hz. So the value for the PLL Divisor is 1687, which means we
put 1686 into the PLL divisor register.

Again looking at the table we see that the current value is 3 (011 binary), and the VCO range value is 2
(10 binary). We setup our cap control file for these values, and then adjust the phase until the video is the
highest quality.

If we also need a good match for the range of colors then we would also adjust the red, green and blue,
offset and gain values. PLEASE read the AD9888 data sheet before you attempt this. The gain and offset
interact in strange ways, and the gain register is opposite of what you might expect.

The values for the {AD9888B.1] and [AD9888B.2] sections need to be adjusted to match those in the
capture file example above, to complete the example. These settings worked well with a Toshiba Laptop
output.

7. TUNING THE SETTINGS
When tuning the settings consider the follow suggestions.

Use the highest quality cable you can use. A bad cable will prevent you from tuning the settings in any
meaningful way. Cheap cables for KVM applications do not work well. The best cable uses 75 ohm coax
for all the signals.

If you are trying to sample video for which you do not have the CORRECT timing, then measure it the
video timing with an oscilloscope first. Try to measure the timing as accurately as possible as your
settings will have to be accurate to less than a tenth of a percent typically. If your source has separated
syncs, then use a frequency counter to measure the frequency. Some flat panel displays will tell you the
frequencies they have detected.

43 of 47

Set the PLL Divisor first. The other settings can not improve on a bad PLL Divisor setting. Be prepared to
shift the value up and down by small amounts.

The PLL Divisor affects the video in a possibly un-expected way. If you increase the PLL Divisor the pixel
frequency will try to go up, which will add additional pixels in the line. So if the image looks stable, but
there aren't enough pixels being displayed increase the PLL Divisor.

After setting the PLL Divisor, set the PLL current. The quality of the phase lock loop lock is strongly
affected by the PLL current setting. The larger the current the higher the gain. First start with a lower
current. If the setting is too high the PLL will oscillate causing trembling pixels, or wavy vertical columns.
Look at the last pixels in the image (on the right) to see problems with oscillation, or bad Divisor values.

Set the Phase last. The phase will improve the sharpness of the image. A poorly set phase can cause
odd gray vertical lines in the display. A poorly set phase will reduce the contrast in an image.

You will also need to set the number of lines in the image. If set the ROI too large the FPGA may not give
you an image at all, so start with low settings on the number of lines.

Finally if you intend to use the interface in an unattended application, make sure your settings are not too
tight. The PLL is affected by the amount of noise in the system. If you make the gain very high it can go
into oscillations for some images.

44 of 47

8. GENERAL INFORMATION

1.20 TROUBLESHOOTING

There are several things you can try before you call Alacron Technical Support for help.

_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure that the system is properly installed.

_____ Go back over the software installation to make sure you have installed all necessary software.

_____ Run the Installation User Test to verify correct installation of both hardware and software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the Alacron CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\alacron\alinfo

1.21 ALACRON TECHNICAL SUPPORT
Alacron offers technical support to any licensed user during the normal business hours of 9 a.m. to 5
p.m. EST. We offer assistance on all aspects of processor board and PMC installation and operation.

1.21.1 Contacting Technical Support

To speak with a Technical Support Representative on the telephone, call the number below and ask
for Technical Support:

Telephone: 603-891-2750

If you would rather FAX a written description of the problem, make sure you address the FAX to
Technical Support and send it to:

Fax: 603-891-2745

You can email a description of the problem to support@alacron.com

Before you contact technical support have the following information ready:

_____ Serial numbers and hardware revision numbers of all of your boards. This information is

written on the invoice that was shipped with your products.

45 of 47

_____ Also, each board has its serial number and revision number written on either in ink or in bar-
code form.

_____ The version of the ALRT, ALFAST, or FASTLIB software that you are using.

_____ You can find this information in a file in the directory: \usr\alfast\alinfo

_____ The type and version of the host operating system, i.e., Windows 98.

_____ Note the types and numbers of all your software revisions, daughter card libraries, the
application library and the compiler

_____ The piece of code that exhibits the problem, if applicable. If you email Alacron the piece of
code, our Technical-Support team can try to reproduce the error. It is necessary, though, for
all the information listed above to be included, so Technical Support can duplicate your
hardware and system environment.

1.21.2 Returning Products for Repair or Replacements

Our first concern is that you be pleased with your Alacron products.

If, after trying everything you can do yourself, and after contacting Alacron Technical Support, you
feel your hardware or software is not functioning properly, you can return the product to Alacron for
service or replacement. Service or replacement may be covered by your warranty, depending upon
your warranty. The first step is to call Alacron and request a “Return Materials Authorization” (RMA)
number. This is the number assigned both to your returning product and to all records of your
communications with Technical Support. When an Alacron technician receives your returned
hardware or software he will match its RMA number to the on-file information you have given us, so
he can solve the problem you’ve cited.

When calling for an RMA number, please have the following information ready:

_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications, daughter cards,
etc.

_____ A clear and detailed description of the problem and when it occurs

_____ Exact code that will cause the failure

_____ A description of any environmental condition that can cause the problem

46 of 47

All of this information will be logged into the RMA report so it’s there for the technician when your
product arrives at Alacron.Put boards inside their anti-static protective bags. Then pack the
product(s) securely in the original shipping materials, if possible, and ship to:

Alacron Inc.

71 Spit Brook Road, Suite 200

Nashua, NH 03060

USA

Clearly mark the outside of your package:

Attention RMA #80XXX

Remember to include your return address and the name and number of the person who should be
contacted if we have questions.

1.21.2.1 REPORTING BUGS

47 of 47

We at Alacron are continually improving our products to ensure the success of your projects. In
addition to ongoing improvements, every Alacron product is put through extensive and varied testing.
Even so, occasionally situations can come up in the fields that were not encountered during our
testing at Alacron.

If you encounter a software or hardware problem or anomaly, please contact us immediately for
assistance. If a fix is not available right away, often we can devise a work-around that allows you to
move forward with your project while we continue to work on the problem you’ve encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help if you
create a stand-alone code module that is isolated from your application and yet clearly demonstrates
the anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@alacron.com

We will compile and run the module to track down the anomaly you’ve found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the code to a
disk, describe the error, and mail the disk to Technical Support at the Alacron address below.

If the code is small enough, you can also:

FAX the code module to us at 603-891-2745

If you are faxing the code, write everything large and legibly and remember to include your
description of the error.

When you are describing a software problem, include revision numbers of all associated software.

For documentation errors, photocopy the passages in question, mark on the page the number and
title of the manual, and either FAX or mail the photocopy to Alacron.

Remember to include the name and telephone number of the person we should contact if we have
questions.

Alacron Inc.

71 Spit Brook Road, Suite 200

Nashua, NH 03060

USA

Telephone: 603-891-2750

FAX: 603-891-2745

Web site:

http://www.alacron.com/

Electronic Mail:

sales@alacron.com

support@alacron.com

