

FASTSERIES

ALRT RUNTIME SOFTWARE
PROGRAMMER’S GUIDE AND REFERENCE

USER’S MANUAL

FAST CAPTURE
FAST PROCESSING

FAST RESULTS

FASTSERIES PCI BOARD FAST SERIES PMC

FastVision FastMem
FastImage 1300 Fast4 1300
FastFrame 1300 Fast I/O 1300

30002-00169

 ii

COPYRIGHT NOTICE

Copyright 2002 by Alacron Inc.

All rights reserved. This document, in whole or in part, may not be copied, photocopied,
reproduced, translated, or reduced to any other electronic medium or machine-readable form
without the express written consent of Alacron Inc.

Alacron makes no warranty for the use of its products, assumes no responsibility for any error,
which may appear in this document, and makes no commitment to update the information
contained herein. Alacron Inc. retains the right to make changes to this manual at any time
without notice.

 Document Name: ALRT RT SW Programmer’s Guide & Reference User’s Manual

 Document Number: 30002-00169

 Revision History: 1.2 June 13, 2002

Trademarks:

Alacron is a registered trademark of Alacron Inc.
AltiVec is a trademark of Motorola Inc.
Channel Link is a trademark of National Semiconductor
CodeWarrior is a registered trademark of Metrowerks Corp.
FastChannel is a registered trademark of Alacron Inc.
FastSeries is a registered trademark of Alacron Inc.
Fast4, FastFrame 1300, FastImage, FastI/O, and FastVision are registered
trademarks of Alacron Inc.
FireWire is a registered trademark of Apple Computer Inc.
3M is a trademark of 3M Company
MS DOS is a registered trademark of Microsoft Corporation
SelectRAM is a trademark of Xilinx Inc.
Solaris is a trademark of Sun Microsystems Inc.
TriMedia is a trademark of Philips Electronics North America Corp.
Unix is a registered trademark of Sun Microsystems Inc.
Virtex is a trademark of Xilinx Inc.
Windows, Windows 95, Windows 98, Windows 2000, and Windows NT
are trademarks of Microsoft

All trademarks are the property of their respective holders.

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Telephone: 603-891-2750

Fax: 603-891-2745

Web Site:
http://www.alacron.com/

Email:

sales@alacron.com, or support@alacron.com

 iii

TABLE OF CONTENTS
Copyright Notice ………………………………………………………………………………….. ii
Table of Contents ………………………………………………………………………………… iii
Manual Figures & Tables ………………………………………………………………..………. v
Other Alacron Manual ……………………………………………………………………………. vi

I. INTRODUCTION.. 1

A. Developing TriMedia Programs for FastSeries Boards... 1

B. Software Development with Philips SDE.. 2
1. Program Development .. 2
2. Program Simulation, Debug, and Profiling... 3

C. TMMAN Execution Environment ... 4
1. TMMAN Drivers and Libraries .. 4
2. TMMAN Utilities ... 4
3. Philips Documentation.. 4
4. S3 Driver... 4
5. Alacron TMMAN Utilities ... 4

D. The ALRT Runtime Environment... 5
1. ALRT Host Software .. 5
2. ALRT TriMedia Library... 8
3. ALRT Device Driver .. 8

II. PROGRAMMER’S GUIDE... 10

A. ALRT Host Program Functions .. 10
1. Open TriMedia Processors ... 10
2. Close TriMedia Processors ... 10
3. Select Active Processor .. 10
4. Pass Command-Line Arguments to Processors... 10
5. Load and Execute TriMedia Programs ... 11
6. Get Address of Symbol in TriMedia Program .. 11
7. Virtual and Physical Addresses... 12
8. Convert Virtual Address to Physical Address... 12
9. Read Values from TriMedia Memory... 12
10. Write Values to TriMedia Memory .. 13
11. Pointers to TriMedia SDRAM and Flag Registers.. 13
12. Handle System Calls from the TriMedias ... 14
13. Using System Call Threads... 14

B. ALRT TriMedia Program Functions .. 15
1. Send Extended System Call to Host.. 15
2. Flag Registers ... 16

C. Building Programs on Linux Systems ... 16
1. Compiling Device Driver.. 16
2. Building Host Programs.. 16
3. Building TriMedia Programs .. 17
4. Sample MakeFiles... 17
5. Makefile Conventions for FastSeries Software... 18

III. PROGRAM EXAMPLES .. 19

A. tmload.c.. 19

B. Extended System Call Example ... 21
1. shared.h... 21

 iv

2. sctest.c... 21
3. tmsctest.c .. 24

IV. ALRT HOST SOFTWARE REFERENCE ... 25

A. Function Summary ... 25
aladdr .. 26
alclose ... 27
aldev ... 28
alflagregs... 29
algetb, algetw, algetl, algetba, algetwa’ algetla’ alsetb. Alsetw. Alsetl, alsetba. Alsetwa & alsetla 30
almapload.. 32
almapsdram... 33
alopen ... 34
alputargs.. 35
alsyscall... 36
alsyscallext.. 37
alsyscallserver... 39
alsyscallserver_stop .. 40
alsyscallserver_wait .. 41
VtoP.. 42

V. ALRT HOST DRIVER-LEVEL FUNCTIONS... 43
close_alfast ... 44
ioctl_alfast .. 45
open_alfast.. 48
read_alfast... 49
seek_alfast... 50
write_alfast ... 51

VI. UTILITY PROGRAMS.. 52
tmdump ... 53
tmload ... 54
tmmemtest... 55
tmmkdef.. 56
tmmpload .. 57
tmreset .. 58
tmtest .. 59

VII. ALRT TRIMEDIA RUNTIME REFERENCE... 60

A. Error Control .. 60

B. Functions ... 60
tmflagregs ... 61
tmfast_flagregs_m... 62
mfast_syscall... 63

VIII. ALRT DEVICE DRIVER REFERENCE ... 64

A. Trimedia Device Driver.. 64

B. S3/Virge Device Driver... 66

C. PCI to PCI Bridge Device Driver .. 67

IX. TROUBLESHOOTING... 68

X. ALACRON TECHNICAL SUPPORT... 69

A. Contacting Technical Support ... 69

 v

B. Returning Products for Repair or Replacements... 70

MANUAL FIGURES & TABLES

FIGURE PAGE SUBJECT TABLE PAGE SUBJECT

1 1 Trimedia Program Development &
Execution on FastSeries

2 5 The ALRT Execution Environment

 vi

OTHER ALACRON MANUALS

Alacron manuals cover all aspects of FastSeries hardware and software installation and
operation. Call Alacron at 603-891-2750 and ask for the appropriate manuals from the list below
if they did not come in your FastSeries shipment.

• 30002-00148 ALFAST Runtime Software Programmer’s Guide & Reference

• 30002-00150 FastSeries Library User’s Manual

• 30002-00153 Fast I/O Hardware User’s Manual

• 30002-00155 FastMem Hardware User’s Manual

• 30002-00162 FOIL – FastSeries Object Imaging Library User’s Manual

• 30002-00169 ALRT Runtime Software Programmer’s Guide & Reference

• 30002-00170 ALRT, ALFAST & FASTLIB Software Installation Manual for Linux

• 30002-00171 ALRT, ALFAST, & FASTLIB Software Installation for Windows NT

• 30002-00173 FastMem Programmer’s Guide & Reference

• 30002-00176 FastImage 1300 Hardware User’s Manual

• 30002-00180 Fast4 1300 Hardware User’s Manual

• 30002-00184 FastSeries Getting Started Manual

• 30002-00183 FastImage 1300 Camera Integration User’s Manual

• 30002-00185 FastVision Hardware User’s Manual

• 30002-00186 FastVision Software User’s Manual

• 30002-00187 FastFrame 1300 Hardware User’s Manual

 1

I. INTRODUCTION

A. Developing TriMedia Programs for FastSeries Boards

Figure 1 diagrams the steps in application development and execution for Alacron’s
FastSeries boards.

Figure 1. TriMedia Program Development and Execution on FastSeries

As diagrammed in Figure 1, all applications use the Software Development Environment
(SDE) from Philips TriMedia Corporation to compile and debug TriMedia programs for the
FastSeries boards. SDE is supported on several operating systems, and the TriMedia
application can be compiled and simulated on any supported system.

Normally, applications are developed in SDE and then executed in the Philips TMMAN
execution environment. However, the Alacron FastSeries board can run under operating
systems where TMMAN is not supported. You can use the TMMAN execution environment
with FastSeries boards under Windows/NT, for example.

Under operating systems not supported by SDE, you use Alacron’s ALRT Runtime
Environment instead of TMMAN. ALRT was designed specifically for use with the FastSeries
products, and provides features and utilities not available from TMMAN. You may prefer
ALRT in systems with large numbers of TriMedia processors.

Philips SDE Development Environment

Compile TM Program

Debug TM Program

Simulate TM Program

Profile TM Program

TMMAN Execution Environment

TMRUN & its relatives
 executes TM Program,
 handles C runtime system calls

S3 drivers from 3 rd party

usertest, s3bridgecontrol, pciprobe
 from Alacron

ALRT Execution Environment

User-written Host program
 executes TM Program,
 handles C runtime system calls,
 handles extended system calls

TM, Bridge, & S3 drivers from Alacron

tmdump, tmload, tmmemtest, tmmkdef,
 tmmpload, tmreset, & tmtest utilities
 from Alacron

 2

B. Software Development with Philips SDE

The Philips SDE contains utilities to develop, compile, simulate, debug, and profile TriMedia
application programs. The listing here may differ in detail from the Philips release you have.
Refer to the documentation on the CD ROM with the Philips SDE software for complete
information.

1. Program Development

Program development tools from Philips include the following:

• tmcc, TriMedia C and C++ compiler driver. To compile and link a C program,
tmcc runs the C preprocessor cpp, the core C compiler tmccom, the instruction
scheduler tmsched, the assembler tmas, and the linker tmld. Optionally, tmcc
can strip the final executable with tmstrip. To compile and link a C++ program,
tmcc runs the C++ front end tmcfe rather than cpp, and links with the C++ library
libC++.a in addition to the standard C library libC.a.

• cpp, GNU C-compatible compiler preprocessor. cpp is the standard macro
preprocessor, providing header files, macro expansion, conditional compilation,
and line control. cpp is invoked by the tmcc program automatically, and is not
normally executed directly.

• tmccom, TriMedia compiler. tmcom reads a single preprocessed C source file
and writes an output file containing an intermediate code representation of the file
as decision trees. tmcom is invoked by the tmcc program automatically, and is
not normally executed directly.

• tmsched, TriMedia instruction scheduler. tmsched takes the intermediate format
file produced by tmcom and a machine description file provided by the user, and
generates an assembly-language file containing the scheduled instructions.
tmsched is invoked by the tmcc program automatically, and is not normally
executed directly.

• tmas, TriMedia assembler. tmas assembles TriMedia assembly code for specific
processor descriptions, and creates object files that can be simulated using
tmsim. tmas is invoked by the tmcc program automatically, and is not normally
executed directly.

• tmld, TriMedia program linker. tmld links the various types of executable files.
tmld is invoked by the tmcc program automatically, and is not normally executed
directly.

• tmcfe, TriMedia C++ front end. tmcfe reads a C++ source file and expands it into
a C source file on the standard output. tmcfe is invoked by the tmcc program
automatically, and is not normally executed directly.

• tmsize prints the size in bytes of a TriMedia object file.

• tmcomp, TriMedia object file compressor. tmcomp compresses the text section
of an executable TriMedia object file. The resulting text section has a memory
width of 8 bits as opposed to 344 bits for the uncompressed file. tmcomp updates
the reference tables and the symbol tables of the output file to reflect the new
address values. The compressed instruction format is Philips proprietary.

• tmstrip, removes symbol information from a TriMedia object file. The stripped file
retains only the symbols required by the simulator tmsim for simulated execution
of an executable object file, or required by the host downloader for successful
downloading and execution of the program on a TriMedia.

 3

• tmar, TriMedia archive librarian. tmar builds libraries of TriMedia object files,
prints the contents of a library, deletes or replaces modules in a library, extracts
modules from a library, and prints modules from a library.

• tmlib, TriMedia format library builder. tmlib builds a TriMedia format library from a
set of input files.

• tmnm, prints symbol table from TriMedia object file or library. The list can be
sorted alphabetically or otherwise, and the symbols can be selected.

• tmranlib, builds symbol table for TriMedia intermediate file archive.

2. Program Simulation, Debug, and Profiling

Philips utilities for simulating, debugging, and profiling the application include:

• tmsim, TriMedia cycle accurate machine level simulator. tmsim simulates the
DSPCPU as described in the input machine description file, including the PCSW,
DPC, SPC, and CCOUNT registers. tmsim also simulates MMIO space, memory
and cache control registers, the vectored interrupt controller, four timers and
debug support (instruction and data breakpoints). Audio in/out, video in/out, ssi,
jtag, vld, and icp peripherals are simulated only when enabled through a command
line option. tmsim also provides operating system support, catches and reports
exceptions, and includes commands useful for debugging.

• tmcanal, TriMedia cache analysis tool. tmcanal reads a tracefile produced by the
simulator tmsim and provides a graphic interface to view the cache behavior
during program execution.

• tmdbg, TriMedia source-level debugger. tmdbg provides GUI or command-based
debugging of a TriMedia executable program that has been compiled with the –g
option to tmcc. The debug symbol table generated with the –g option contains the
names of all the source files (which can be browsed in the debugger) and
extensive debugging information. tmdbg also includes commands for debugging
pSOS+ applications; these require the pSOS+ monitor to be linked into the
application.

• tmdump, dump TriMedia format object modules in readable format. tmdump
dumps a specified portion of a file. tmdump displays binary and string data, string
identifiers, and section (segment) names alongside numeric identifiers.

• tmprof, generate estimated execution profile. The default tracefile, named
mon.out, is generated either by running a program compiled with the –ptm or –
lprof option to tmcc, or by simulating a program using the –statfile option to
tmsim.

• tmdtprof, TriMedia profile information lister. tmdtprof generates an ASCII
readable form of the profile information contained in its input file. The profile data
is typically in the file dtprof.out generated by the execution of a program compiled
with the –p option to tmcc.

 4

C. TMMAN Execution Environment

The Philips TMMAN execution environment supplies drivers, libraries, and utilities for loading
and executing TriMedia programs.

1. TMMAN Drivers and Libraries

The Philips TMMAN execution environment drivers and libraries for loading and executing
TriMedia programs include:

• TMMan.sys, kernel mode driver. TMMan.sys provides the TMMan functionality,
including support for multiple boards.

• TMMan32.dll, User Mode Win32 DLL that provides the TMMan Host API to
Win32 applications

• TMMan.a, the target component of TMMan. This static library links to boot
applications on the TriMedia. It provides the TMMan functionality on the target.

• TMCRT.dll, TriMedia C Runtime Server. This module accepts requests from the
target and services them. These requests are Unix level 2 I/O calls that are
generated by the TriMedia executable. It uses TMMan messaging to communicate
with the target.

• Driver.exe, a helper utility for installing the kernel mode driver in the system.
Needed only for install and uninstall operations.

2. TMMAN Utilities

The TMMAN environment supplies utilities for loading and executing TriMedia programs
including:

• TMMon, command-based interface for executing programs on the TriMedia
processor. Functions via calls to TMMan programs, and by default uses TMRun
as its console.

• TMRun, command line utility for downloading and running executables on the
TriMedia processor. Used by TMMon as the TriMedia console.

• TMmpRun, multiprocessor version of TMRun. Enables multiprocessor cluster
downloading on multiple TriMedia boards in the system.

3. Philips Documentation

Documentation on program development with Philips SDE and execution with the
TMMAN environment is provided on the CD-ROM from Philips North America.

4. S3 Driver

The Alacron FastSeries boards use an S3 ViRGE GX2 device for video output. The driver
for this component must be obtained from the vendor, S3 Corporation; neither Alacron nor
Philips supplies a driver for this device under TMMAN.

Instructions for configuring the S3 driver for FastSeries are given in the ALFAST
Programmers Guide & Reference.

5. Alacron TMMAN Utilities

To enable the FastSeries boards to perform optimally in the TMMAN environment,
Alacron supplies three utility programs that run under TMMAN. They are:

 5

• usertest, a test program that verifies the correct installation of the hardware and
software.

• s3bridgecontrol, a program that conditions the PCI bridge and S3 devices on the
FastSeries board.

• pciprobe, a device driver for the PCI bridge device on the FastSeries board

Instructions for running usertest are given in the installation manuals (both HW and SW).

Instructions for using s3bridgecontrol and pciprobe are given in the ALFAST
Programmers Guide & Reference.

D. The ALRT Runtime Environment

The Alacron Runtime (ALRT) software supports execution of a TriMedia program on an
Alacron FastSeries board under operating systems where the Philips SDE components are
unavailable. ALRT consists of four components: the Host Runtime software, the TriMedia
Runtime software, the Device Driver, and a set of utilities parallel to TMRUN. This manual
documents the ALRT components.

Figure 2. The ALRT Execution Environment

1. ALRT Host Software

The ALRT Host Software provides a Host API for the Alacron FastSeries boards
operating without Philips TMMAN. The Host software consists of a host device and a Host
application library.

TriMedia Application Program
Calls ALRT TriMedia SW

 Extended system calls to Host

 Global Flag Registers for IPC

Host Application Program Calls
ALRT Host SW

Execute TM Program

Handle C runtime system calls from TMs

Handle extended system calls from TMs

Get pointers to TriMedia SDRAM,
 global flag registers for IPC

ALRT Drivers

 TriMedias

 PCI-to-PCI Bridge

 S3 GX2

Host System

ALRT Utility Programs

 tmdump, tmload, tmmemtest, tmmkdef,
 tmmpload, tmreset, tmtest

 6

a) Host Device

The Host software opens a single instance of the device driver to access all the
TriMedia processors in the system.

b) Host Library Functions

The Host application library is provided as a library called alfast.a. Applications must
include the file allib.h.Included library functions are:

Aladdr Retrieve the address of a target program variable
Alclose Close a device
Aldev Select current device
Alflagregs Return pointer to flag registers
alget* Read byte/word/long single element or array
Almapload Load a program file on to a processor
Almapsdram Return pointer to SDRAM
Alopen Open a device (processor)
Alputargs Pass argc/argv arguments to target processor
alset* Write byte/word/long single element or array
Alsyscall Process system calls from a target processor
Alsyscallext Process system call, with extensions
alsyscallserver Spin off a system call server thread
alsyscallserver_stop Stop a system call server thread
alsyscallserver_wait Suspend program execution until thread completes
VtoP Convert target virtual to physical address

c) Driver Interface Functions

A set of operating system independent device driver interface functions are provided;
these are called from within the Host application program. These functions are for
program development rather than production code.

Open_alfast open device
Close_alfast close device
Seek_alfast set read/write seek address
Read_alfast read from SDRAM
Write_alfast write to SDRAM
ioctl_alfast perform I/O control function
Dev_alfast return currently selected device

These functions provide lower level access to the underlying device driver. The
functions are documented in a Reference section but (except for ioctl_alfast) are not
recommended for use by applications. The functions alopen, alclose, alget*, alset*,
and almapsdram perform the same functions. The ioctl_alfast function provides a
number of useful functions including determination of device configuration, waiting on
system call request interrupts, reading and writing MMIO space registers, and
accessing mapped device memory.

 7

d) Utility Programs

In addition to the functions that are called from within a Host program, a number of
OS-level executable utility programs are provided:

tmload Load a TM program
tmdump Display TM’s MMIO registers
memtest Run quick memory test on a TM’s SDRAM
tmmkdef List TM’s I/O mappings
tmreset Reset TM
tmmpload Load multiple TM programs

The source code to tmload is provided in the Examples section of this manual and as
sample code in the directory examples/host/tmload.

e) TriMedia Program Execution

Target (TriMedia) programs begin execution immediately at entry point main
following loading. The ALRT Host library has no calls to begin execution. Since the
target code never terminates, there are no return value or status functions.

f) Mapped Virtual Memory

The Host device library permits the direct mapping of TriMedia SDRAM into the Host
program’s virtual address space. The application can dereference pointers that point
to the physical memory containing the program and data of the TriMedia processor.
The functions almapsdram and alflagregs both return pointers to mapped SDRAM.
almapsdram returns a pointer to a specific address in SDRAM. The address may be
derived by using aladdr to compute a symbol value, or by having the TriMedia pass
address information to the host at runtime (using flag registers or extended system
calls).

g) Flag Registers

Ten contiguous 32 bit uncached memory locations are reserved for application use.
These locations are referred to as the flag registers. The host software can use
alflagregs to establish a mapped address that may be used to access these
locations. The flag registers are initialized to zero when a TriMedia program is loaded
using almapload.

h) Thread Functions for System Call Service

The host library provides a simple set of thread control functions to service system
call requests. The host function alsyscallserver starts a thread. The application
might then use alsyscallserver_wait to wait on completion of this thread. When the
thread is no longer needed, it is terminated with alsyscallserver_stop.

i) Host Resident DMA Buffer

The ALFAST runtime provides an API call for allocating a Host resident DMA buffer.
The function call specifies the size in bytes of the buffer to be allocated. A second
function maps the DMA buffer into user space. A third call frees the DMA buffer and
the mapping. During TM program load, the DMA buffer information is exported to a
global structure in the TriMedia processor’s memory. The TM processor may directly
reference the buffer addresses, or perform PCI DMA to the buffer.

 8

2. ALRT TriMedia Library

The ALRT TriMedia library provides an application programming interface (API) to be
used by the TriMedia processors in the Alacron Runtime environment for non Philips SDE
supported hosts. The ALRT TriMedia library is provided as part of the ALFAST runntime
library libalfast.a. The standard ALFAST include file (alfast_tm.h) should be included in
C application source code to provide all declarations required for use of the library. The
functionality added for the ALRT environment is as follows:

• Send extended system call to Host

• Communicate with other TriMedias via global flags provided by the driver.

a) Extended System Calls

A library function tmfast_syscall is provided to allow a TM program to communicate
with a host extended system call handler. The tmfast_syscall function takes a cmd
argument which is an integer code. Since the same mechanism is used for C runtime
support, the cmd code must be unused by existing functions. cmd values greater
than or equal to 2000 (decimal) may be used; a predefined token
SYSCALL_EXT_START may be used by both Host and TriMedia programs as a
base for extended system call codes.

b) Flag Registers

Each TM processor has a region of global shared memory. This memory is
uncached, and accessible to all TM processors, as well as the host. It is available for
application specific use. The function tmfast_flagregs returns a pointer to the flag
registers on the local TM; the function tmfast_flagregs_m returns a pointer to the
flag registers on other TM processors.

c) Memory Management

The TriMedia application is responsible for all memory management. Standard TM
library calls (malloc, free, etc.) are available for dynamic allocation.

d) C Runtime Support

The ALRT TriMedia Runtime library supports a subset of C runtime functions that
require Host action: open, close, fstat, stat, isatty, read, write, lseek, time, and
exit.

C runtime functions that do not require Host support are fully supported (e.g., strcpy).

3. ALRT Device Driver

The ALRT Device Driver operates only with the Alacron Fast Series PCI boards. The
FastSeries boards have one or more TriMedia processors, an S3/ViRGE display, and a
PCI-to-PCI bridge device, each appearing as a distinct physical PCI device.

The ALRT driver probes and attaches to all three devices.

Access to the TM processors is via kernel mapping of the 64 KB MMIO register space for
each TM, kernel mapping of a 64 KB SDRAM communications buffer for each TM, user
mapping of 64 KB MMIO register space, user mapping of all SDRAM (8/16 MB), kernel
access to PCI configuration space registers, handling TM to Host interrupts in the kernel,
asignaling waiting user threads using condition variables, and allocation and mapping of
kernel resident DMA buffers for TM to host data transfer. The number and size of buffers
is specified at driver load time.

 9

Access to the S3/Virge display device consists of user mapping of video display memory
(4 MB) and user mapping of control register space (64KB). No support is provided for S3
to host interrupts.

Access to the PCI to PCI bridge consists of reading and writing PCI configuration
registers for possible reconfiguration.

The ALRT device driver is implemented as separate drivers, one for the TMs, one for the
S3 and one for the bridge. The ALRT device driver supports multiple FastSeries boards.
The device driver supports multiple thread access, with the restriction that only one thread
is allowed to wait on the TM interrupt event. If multiple threads wait on TM interrupts,
unpredictable results occur.

 10

II. PROGRAMMER’S GUIDE

This Programmer’s Guide shows how the Host program controls the TriMedia program via the
ALRT Host software, and how the TriMedia program performs IPC with the Host and other
TriMedias via the ALRT TriMedia Runtime software

A. ALRT Host Program Functions

The Host program in the ALRT environment controls the TriMedia program via calls to
alfast.a library functions. To access the library, the Host program includes header file allib.h.

1. Open TriMedia Processors

The Host software opens a single instance of the ALRT Device Driver to access up to
eight TriMedia processors in the system. Processors are numbered from 0 to
NPROCS−1. Processor 0 must be the master TriMedia on the board; only the master
processor programs the PAL devices on the board.

To open each of the processors in turn, the Host program makes calls to:

 int alopen(int proc)

The function returns SUCCESS (0) for successful open, FAILURE (-1) otherwise.

The Host program can open processor 0 through 7 as follows:

#include allib.h
#define NPROCS 8
int i, ret;
for (i=0; i<NPROCS; i++) {

ret = alopen (i);
if (ret){
printf(“error opening proc %d.\n”, i);
exit(1);
}

}

2. Close TriMedia Processors

When the Host program is preparing to exit, it closes each processor with calls to:

 int alclose(int proc)

3. Select Active Processor

The calls to ioctl_alfast (in the previous section) and to alsyscall (at the end of this
section on Host software functions) have proc arguments to specify which processor to
use. The remaining Host software functions do not contain a proc argument, but instead
operate on the one processor that is currently active. The Host program selects the active
processor with a call to:

 int aldev (int proc)

4. Pass Command-Line Arguments to Processors

The Host program can pass argc/argv command-line parameters to the target processor.
The Host stores the array of arguments pointed to by argv in Host system non-volatile
memory (not on the stack). Then

 11

int alputargs (int argc, char *argv[])

The call must be made after device open (alopen) but prior to invoking almapload for the
target processor. The array of data referenced by the argv parameter must remain
present in memory until after the almapload call. The arguments are passed to the target
processor using the system call service mechanism, so the Host application must enter a
wait for system call loop to utilize this facility.

Here is an example:

int main (int argc, char *argv[])
{
int proc = 0;
char *my_argv[argc-1];
int i;
/* copy all but first argument */
for (i=1; i<argc; i++) {
my_argv[i-1] = argv[i];
 }
if (alopen (proc)) error ();
aldev (proc);
/* pass all but first argument */
alputargs (argc – 1, my_argv);
if (almapload (infile, 0)) error ();
/* begin waiting for system calls */

5. Load and Execute TriMedia Programs

To load the program into each TriMedia and begin execution, the Host program calls:

 int almapload (char *filename, int stacksize)

Function almapload loads the processor board executable file given by filename into
TriMedia memory. Argument filename should be a file residing within the Host file
system. The file should be an executable image built using compiler tools specifically
designed for the TriMedia. The stacksize argument is ignored.

Upon completion of almapload, the on-board processor reset is deasserted and program
execution begins. On the TriMedia processor, execution begins at function main.

Processor 0 is the master TriMedia on the board. The master processor programs the
PAL devices on the board. The program on Processor 0 must be loaded and executed
before any other processors are activated. After processor 0, the remaining TriMedias
may be started in any order.

6. Get Address of Symbol in TriMedia Program

To obtain the virtual address corrresponding to a symbol in the TriMedia program most
recently loaded, the Host program calls

 ADDR aladdr (char *name)

The aladdr function returns the virtual address of the variable given by the string input
argument name. The symbol table information in the currently loaded target executable
file is examined to resolve the address.

Function aladdr returns a valid address for a particular processor only after a call to
almapload referencing that processor. Only the symbols loaded by the last call to
almapload may be referenced by aladdr.

The returned value is a virtual address and should be converted to a physical address
(see VtoP) before use in functions such as alget[bwl][a], and alset[bwl][a].

 12

Note: There is significant overhead in executing the aladdr call. If the address of a
symbol is to be used more than once, it is recommended that aladdr be called once and
the value saved in a program variable.

7. Virtual and Physical Addresses

The TM processor uses physical addresses to access its two memory resources, the
MMIO space and the SDRAM space. The physical locations of these resources are
assigned by the BIOS or OS as part of the PCI bus configuration. References to TM
program code and data addresses in SDRAM are adjusted to the physical PCI addresses
when each TM is loaded using almapload.

In the ALRT library, aladdr returns as a virtual address the offset from start of
SDRAMthe variable’s address with the program image relocated to a TM with SDRAM
located at PCI address 0. To convert from the virtual address returned by aladdr to the
physical address used by Host calls to alget and alset, the program calls VtoP (see
below). The physical address is the actual PCI address.

A problem can arise when the TM processor passes a target virtual address to the Host.
In this library, a target virtual address that the TM processor supplies must be treated as a
physical address, and not ever passed to VtoP. VtoP should be used only for addresses
that come from aladdr.

Note: aladdr returns addresses relative to the base of SDRAM. To compute a physical
address, the application would add the SDRAM base address, obtained using ioctl_alfast
(IOCTL_GET_SDRAM_BASE). This works unless the symbol being looked up has been
reassigned to uncached memory (using the tmld –sectionproperty data=uncached
directive). In this case, the actual address of the symbol is relocated to high SDRAM
addresses, and the value returned by aladdr is not valid. The address must be passed at
runtime.

TriMedia caching of SDRAM is another concern. Unless explicitly linked to an uncached
section, data used by the TriMedia programs are cached. To enable the host to see data
written to SDRAM by the TriMedia, a cache write-back must be executed by the TriMedia
(see TriMedia SDE function _cache_copyback). Similarly, to enable the TriMedia to see
data written to SDRAM by the host, a cache invalidate must be executed (using
_cache_invalidate)

8. Convert Virtual Address to Physical Address

To convert virtual addresses returned by aladdr to physical addresses for the alget and
alset functions, the Host program calls:

 ADDR VtoP (ADDR vaddr)

The address conversion is performed on the processor that was selected by the aldev
function.

9. Read Values from TriMedia Memory

The Host program can read a single value or an array of values from TriMedia memory
using the physical address. The memory transfer is performed on the processor that is
selected by the aldev function.The calls have formats that depend on the type of value to
be returned,

 int algetb (ADDR physadd) // Read 8-bit value

 13

 int algetw (ADDR physadd) // Read 16-bit value

 long algetl (ADDR physadd) // Read 32-bit value

 int algetba (ADDR physadd, char *buf, int n) // Read array of 8-bit values

 int algetwa (ADDR physadd, short *buf, int n) // Read array of 16-bit values

 long algetla (ADDR physadd, long *buf, int n) // Read array of 32-bit values

The alget functions transfer data from the processor memory buffer to a host buffer.
Buffers shared by the host and target processors should be uncached.

The algetba, algetwa, and algetla functions read arrays of bytes, 16-bit words or 32-bit
longwords from the processor memory buffer specified by argument physadd into the
host buffer specified by argument buf. The size of both buffers must be at least n bytes,
words, or longwords as appropriate.

The algetb, algetw, and algetl functions read a single byte, word or longword from
processor memory into Host memory. The value read from processor physical address
physadd is the function return value.

10. Write Values to TriMedia Memory

The Host program can write a single value or an array of values to TriMedia memory
using the physical address. The memory transfer is performed on the processor that was
selected by the aldev function. The calls have formats that depend on the type of value to
be written.

 int alsetb (ADDR physadd, int value) // Write 8-bit value

 int alsetw (ADDR physadd, int value) // Write 8-bit value

 long alsetl (ADDR physadd, long value) // Write 8-bit value

 int alsetba (ADDR physadd, char *buf, int n) // Write array of 16-bit values

 int alsetwa (ADDR physadd, short *buf, int n) // Write array of 16-bit values

 long alsetla (ADDR physadd, long *buf, int n) // Write array of 16-bit values

The alset functions transfer data from host memory to processor memory.

The alsetba, alsetwa, and alsetla functions write arrays of bytes, 16-bit words or 32-bit
longwords to the processor board buffer specified by argument physadd from the host
buffer specified by argument buf. The size of both buffers must be at least n bytes, words
or longwords as appropriate.

The alsetb, alsetw, and alsetl functions transfer a single byte, word or longword between
processor board memory and host memory. The alset functions write the byte, word or
longword in argument value to physical address physadd.

Buffers that are shared by the host and target processors should be uncached. Functions
alsetb, alsetw, and alsetl may perform a read-modify-write in processor board memory.
Data could be overwritten if user software allows the host and processor board application
to modify the same buffer in processor board memory simultaneously.

11. Pointers to TriMedia SDRAM and Flag Registers

The Host program can obtain virtual memory pointers to TriMedia SDRAM locations, and
to the set of global flag registers maintained by the ALRT driver for each TriMedia
processor in the system.

 14

The Host program can obtain the physical address of a location in TriMedia SDRAM in
several ways. Given a physical address physaddr in the SDRAM of a given TriMedia
(dev), the Host can get a virtual pointer to that address by calling:

 void *almapsdram (int dev, unsigned long physaddr)

The ALRT driver maintains a set of global 32-bit Flag Registers for each of the TriMedia
processors opened by the Host program (with alopen). The flag registers are located in
uncached space. The Host program can get a pointer to the flag registers for a given
TriMedia dev by calling:

 volatile unsigned long *alflagregs(int dev)

12. Handle System Calls from the TriMedias

Once the program has been started on a given TriMedia, the Host program can service
normal or extended system calls from that processor.

a) Wait for Interrupt

The TriMedia interrupts the Host when it has a system call pending. The Host
program calls ioctl_alfast to halt program execution while waiting for an interrupt
from a particular TriMedia:

 int ioctl_alfast (int dev, IOCTL_INTWAIT);

The ioctl_alfast returns when the system call request has been received.

b) Normal System Calls

The TriMedia program initiates a normal system call (no data passed with the system
call request) for any of the C runtime library functions listed above. To handle normal
system calls (after waiting for the interrupt as shown earlier), the Host program calls:

 Int alsyscall (int proc)

The call services any normal system call requests that are pending for processor
proc, then returns. The function does not wait.

alsyscall returns 0 for success, non-zero if the TM program requests an exit call.

c) Extended System Calls

When the TM program needs to send data along with the system call, it uses TM
Runtime library call tmfast_syscall to pass a request number (greater than
SYSCALL_EXT_START to avoid conflict with the built-in requests) and an array of
unsigned long values. The Host program handles extended system call requests
(after waiting for the interrupt as shown earlier) with a call to:

 int alsyscallext (int proc,

 int (*callback)(int dev, int request, unsigned long args[])

This function services both normal and extended system calls from the TriMedia. If an
extended system call has been requested, alsyscallext invokes the function callback
(if non-null), passing the request number and the array of arguments. alsyscallext
also returns 0 for success, non-zero when the TM program requests an exit call.

13. Using System Call Threads

Instead of waiting explicitly for a system call interrupt, the Host program can launch a
thread to handle system calls from each processor.

 15

To spin off a system call thread, the Host program calls:

int alsyscallserver (int dev, int (*callback)(int dev, int request,
 unsigned long args[]), char *cwd)

The thread handles standard system calls in the normal manner, while passing extended
system calls to routine callback (if non-null), using exactly the same argument passing as
in alsyscallext above. Argument cwd should be NULL to use the current working
directory of the calling thread as the current working directory.

Once launched, each thread monitors its assigned processor for system call interrupts,
while Host program execution continues. Each thread terminates when its corresponding
processor program calls exit() or encounters an exception. If it is desired to synchronize
the Host program and thread termination, the Host program calls

 int alsyscallserverwait (int dev)

This function does not return until the system call thread for the given processor
terminates.

To terminate a thread before its normal completion, the Host program calls

 int alsyscallserverwait (int dev)

This function terminates the server for the given processor, leaving other threads
unchanged.

B. ALRT TriMedia Program Functions

In the ALRT environment, the application includes a Host program to open, load, and start the
TriMedia processors on the Alacron board. The TriMedia program in the ALRT environment
calls the functions described in this section to communicate with the Host program. The TM
Runtime library API is provided in library libalfast.a; the TriMedia program should include
header file alfast_tm.h.

The application is responsible for all memory management. Standard TM library calls are
available for dynamic allocation (malloc, free, etc.)

Host support is provided for the subset of C runtime functions listed earlier: open, close,
fstat, stat, isatty, read, write, lseek, time, and exit

C runtime functions that do not require Host support are fully supported (e.g., strcpy).

1. Send Extended System Call to Host

In addition to the standard system calls listed earlier in this section, the application can
include extended system calls for custom processing by the Host. The extended system
call can pass a small number (currently ten) of unsigned long argument values for the
Host program to process. To generate the system call request, the TriMedia program
loads the values into an array, then calls

 int tmfast_syscall (int request, int nargs, unsigned long args[], int *pret)

The request should be a value greater than MAX_SYSCALL_ARGS, to avoid conflicts
with standard system call requests. The call includes nargs, the number of arguments
passed in array args. The Host program sets up a handler for extended system calls; the
Host handler can determine how many arguments to expect based on the request
number. Upon successful return from tmfast_syscall, variable pret (if non-NULL)
contains the value returned by the Host handler.

 16

2. Flag Registers

The ALRT driver maintains a set of global 32-bit Flag Registers for each of the TriMedia
processors opened by the Host program (with alopen). The flag registers are located in
uncached space.

The global 32 bit flag registers can serve as communication links among the TriMedias.
Each TriMedia processor can read and write its own flag registers, and can also read and
write the flag registers of another TriMedia when the processor number (proc in the
alopen call by the Host) is known.

To obtain a pointer to its own flag registers, the TriMedia program calls

 volatile unsigned long *tmfast_flagregs (void)

This call returns a pointer to the array of flag registers set up for the calling processor.
When the tmfast_flagregs function returns, read/write references to the flag register
array are valid. For example,

#include <alfast_tm.h>
extern char buf[];
volatile unsigned long *flagregs = tmfast_flagregs;
flagregs[0] = (*unsigned long) buf;

The TriMedia can also obtain a pointer to the flag registers of another processor in the
system. The TriMedia program must somehow know the integer processor number used
by the Host program to open the other TM (that is, the dev argument used in the Host’s
alopen call). The TM program calls

 volatile unsigned long *tmfast_flagregs_m (int dev)

The function tmfast_flagregs_m returns a pointer to the beginning of the flag register
array for processor dev, making the array accessible for reading or writing.

#include <alfast_tm.h>
// Read global structure for TM proc #2
int dev2 = 2;
extern char buf[];
volatile unsigned long flagregs2 = tmfast_flagregs_m (dev2);

flagregs2[0] = (*unsigned long) buf;

C. Building Programs on Linux Systems

1. Compiling Device Driver

The driver object files have been compiled with the Linux kernel version shown in the file
$ALFAST/linux/driver/kernel.version

If a different kernel version is being used, it may be desirable to recompile the driver
object files. This is accomplished as follows:

cd $ALFAST/linux/driver
make
cd $ALFAST/linux/pciprobe
make

2. Building Host Programs

 17

Host application programs are built using the Linux C compiler (gcc) and are linked with
Alacron provided libraries. The following is the standard makefile used to build host
applications:

ROOTDIR = $(ALFAST)
include $(ROOTDIR)/tools/include/linuxhost.inc

all: app

OBJS = app.o

app: $(OBJS) $(LIBS)
 $(CC) –o $@ $(OBJS) $(LIBS)

3. Building TriMedia Programs

Developing the TriMedia programs for execution under ALRT is essentially the same as
when targetting Philips TMMAN. Both the TriMedia libraries from Philips and the ALFAST
libraries from Alacron can be accessed. PSOS+ and PSOS+M are supported.

TriMedia programs are compiled using cross development tools provided by Philips. The
Philips software is (at present) not available to run under Linux hosts, therefore TriMedia
program development is performed on supported hosts such as Windows NT, or Solaris.

When building TriMedia programs targeted for TMMAN, the user would compile with –
host WinNT. When compiling for ALRT, the program would be compiled with –host
nohost –tmconfig=$ALFAST/lib/tcs20/make/tmconfig flags, and must be linked with
Alacron provided host communication module (hcomm.o). Makefiles are provided for
use under Windows using NMAKE, and under Unix hosts using make.

4. Sample MakeFiles

The following are sample makefiles:

NMAKE File

ROOTDIR = ..\..\..
!include $(ROOTDIR)\tools\include\tmle.inc
all: ntsc.out

OBJS = $(OBJDIR)\ntsc.o

ntsc.out: $(OBJS) $(LIBS)
copy $(LIBDIR)\hcomm.o
$(LD) -o $@ $(OBJS) $(LDFLAGS) $(LDTAIL)
clean:
• del $(OBJS)

clobber: clean
• del ntsc.out

 18

Make File
ROOTDIR = ../../..
include $(ROOTDIR)/tools/include/tmle-mak.inc

all: ntsc.out

OBJS = $(OBJDIR)/ntsc.o

ntsc.out: $(OBJS) $(LIBS)
 $(LD) -o $@ $(OBJS) $(LDFLAGS) $(LDTAIL)

clean:
 -rm -f $(OBJS)

clobber: clean
 -rm -f ntsc.out

5. Makefile Conventions for FastSeries Software

The following summarizes makefile naming conventions:

• makefiles for use with NMAKE are prefaced with nmake

• makefiles for use with Unix make are prefaced with make

• makefiles to build TriMedia programs to run with TMMAN under WINNT have
suffix tmnt

• makefiles to build TriMedia programs to run with ALRT little-endian have suffix
tmle

• makefiles to build TriMedia pregrams to run with ALRT big-endian have suffix
tmbe

• makefiles to build Host programs running under TMMAN or ALRT have suffix
winnt

• makefiles to build host programs running under Solaris/sparc have suffix sol

• makefiles to biuld host programs running under Solaris/x86 have suffix solx86

• makefiles to build host programs running under Linux/x86 have suffix linux

• makefiles to build host programs running under Linux/PPC have suffix linuxppc

So the following makefiles will be encountered:

nmake.tmnt NMAKE TriMedia to run with TMMAN under WINNT
nmake.tmle NMAKE TriMedia to run with ALRT little-endian
nmake.tmbe NMAKE TriMedia to run with ALRT big-endian
nmake.winnt NMAKE Host to run TMMAN or ALRT under WINNT
make.tmle make TriMedia to run with ALRT little-endian
make.tmbe make TriMedia to run with ALRT big-endian
make.sol make Host to run with ALRT under Solaris/sparc
make.solx86 make Host to run with ALRT under Solaris/x86
make.linux make Host to run with ALRT under Linux/x86
make.linuxppc make Host to run with ALRT under Linux/PPC

 19

III. PROGRAM EXAMPLES

A. tmload.c

The tmload program is a simple host application that loads a TM program.

/***
**
** File: tmload.c - load a program
**
** Copyright © 2000; Alacron Inc.
**
** Description:
**
** History:
**
***/

/*----------------------- HEADER FILES -----------------------------------*/
#include <allib.h>
/*----------------------- PRIVATE CONSTANTS ------------------------------*/
/*----------------------- PRIVATE MACROS ---------------------------------*/
/*----------------------- PRIVATE TYPES ----------------------------------*/
/*----------------------- PRIVATE DATA -----------------------------------*/
static int dev = 0;
static char *ifname;

/*----------------------- PUBLIC DATA ------------------------------------*/
/*----------------------- PRIVATE ROUTINE REFERENCES ---------------------*/
PRIVATE void usage (void);
/*----------------------- PUBLIC ROUTINES --------------------------------*/

/***
**
** EXPORT -
**
** Description:
**
***/

int main (int argc, char *argv[])
{
int i;
int rval;
int target_argc;
char **target_argv;

for (i = 1; i < argc; i ++)
if (*argv[i] == ‘-‘)
switch (*(argv[i]+1))
 {
case ‘d’:
if (++i < argc)
dev = atoi (argv[i]);
break;
default:
usage ();
/* no return */
 }

 20

else
 {
ifname = argv[i];
break;
 }

if (!ifname)
usage ();
target_argc = argc - i;
target_argv = &argv[i];

rval = alopen (dev);
if (rval)
 {
printf (“ERROR: can’t open device %d\n”, dev);
return 1;
 }
aldev (dev);
alputargs (target_argc, target_argv);
rval = almapload (ifname, 0);
if (rval)
 {
printf (“ERROR: almapload %s failed: errorcode %d\n”, ifname, rval);
return 1;
 }

for (;;)
 {
rval = ioctl_alfast (dev, IOCTL_INTWAIT);
if (rval)
 {
printf (“WAIT: failed, interrupted maybe\n”);
return 0;
 }
else
 {
rval = alsyscall (dev);
if (rval)
 {
printf (“TM program terminated\n”);
break;
 }
 }
 }

alclose (dev);
return 0;
}

/*----------------------- PRIVATE ROUTINES -------------------------------*/

/***
**
** PRIVATE - usage -
**
** Description:
**
***/

PRIVATE void usage (void)
{
printf (“Usage: tmload [-d dev] [-w] program\n”);

 21

exit (1);
}

B. Extended System Call Example

This simple Host and TriMedia application demonstrates the use of extended system calls.
File shared.h is shared by the Host and TriMedia programs, file sctest.c is the Host program,
and scmtest.c is the TriMedia Program

1. shared.h

#define CMD_SHOWSTRING (SYSCALL_EXT_START + 0)
#define CMD_SHOWINT (SYSCALL_EXT_START + 1)

2. sctest.c

/**
**
** File: sctest.c - load extended system call test program
**
** Copyright © 1999; Alacron Inc.
**
** Description:
**
** History:
**
***/

/*----------------------- HEADER FILES ---------------------------------*/
#include <allib.h>
#include “shared.h”

/*----------------------- PRIVATE CONSTANTS ----------------------------*/
/*----------------------- PRIVATE MACROS -------------------------------*/
/*----------------------- PRIVATE TYPES --------------------------------*/
/*----------------------- PRIVATE DATA ---------------------------------*/
static int dev = 0;
static char *ifname = “tmsctest.out”;

/*----------------------- PUBLIC DATA ----------------------------------*/
/*----------------------- PRIVATE ROUTINE REFERENCES -------------------*/
PRIVATE int ext_handler (int dev, int cmd, unsigned long args[]);
/*----------------------- PUBLIC ROUTINES ------------------------------*/

/***
**
** EXPORT - main
**
** Description:
**
***/

int main (int argc, char *argv[])
{
int i;
int rval;

for (i = 1; i < argc; i ++)
if (*argv[i] == ‘-‘)

 22

switch (*(argv[i] + 1))
 {
case ‘d’:
if (++i < argc)
dev = atoi (argv[i]);
break;

 }

 /*
• open device
 */

rval = alopen (dev);
if (rval)
 {
printf (“host: ERROR: can’t open device %d\n”, dev);
exit (1);
 }
aldev (dev);

 /*
• load program TM file
 */

rval = almapload (ifname, 0);
if (rval)
 {
printf (“host: ERROR: almapload %s failed: error code %d\n”,
ifname, rval);
exit (1);
 }

 /*
• Main wait loop
 *
• wait for system call interrupt
 *
• process system call request, using ext_handler() for
• extended system calls.
 */

for (;;)
 {
rval = ioctl_alfast (dev, IOCTL_INTWAIT);
if (rval)
 {
printf (“WAIT: failed, signal maybe\n”);
return 0;
 }
else
 {
rval = alsyscallext (dev, ext_handler);
if (rval)
 {
printf (“TM program terminated\n”);
break;
 }
 }
 }

alclose (dev);
return 0;

 23

}

/*----------------------- PRIVATE ROUTINES -------------------------------*/

/***
**
** PRIVATE - ext_handler -
**
** Description:
**
** Handle application specific system calls. The TM passes a command
** up to MAX_SYSCALL_ARGS 32 bit arguments. This function processes
** the command, returning a value that is returned to the TM.
**
***/

PRIVATE int ext_handler (int dev, int cmd, unsigned long args[])
{
int rval = 0;
switch (cmd)
 {
case CMD_SHOWSTRING:
 {
char *s;
s = almapsdram (dev, args[0]);
printf (“host: from %d: %s\n”, dev, s);
rval = 100;
break;
 }

case CMD_SHOWINT:
 {
printf (“host: from %d: %ld %ld\n”, dev, args[0], args[1]);
rval = 200;
break;
 }

default:
rval = -1;
 }

return rval;

}

 24

3. tmsctest.c

#include <alfast_tm.h>
#include “shared.h”

int main (int argc, char *argv[])
{
unsigned long args[MAX_SYSCALL_ARGS];
int rval;
int retval;

args[0] = (unsigned long) “this is a test ...”;
_cache_copyback ((void*) args[0], strlen ((char*)args[0] + 1));
rval = tmfast_syscall (CMD_SHOWSTRING, 1, args, &retval);
if (rval)
 {
printf (“tm: tmfast_syscall failed\n”);
exit (1);
 }
printf (“tm: CMD_SHOWSTRING returned %d\n”, retval);
args[0] = 11111;
args[1] = 22222;
rval = tmfast_syscall (CMD_SHOWINT, 2, args, &retval);
if (rval)
 {
printf (“tm: tmfast_syscall failed\n”);
exit (1);
 }
printf (“tm: CMD_SHOWINT returned %d\n”, retval);

}

 25

IV. ALRT HOST SOFTWARE REFERENCE

A. Function Summary

aladdr retrieve the address of a target program variable
aldev select current device
alclose close a device
alflagregs return pointer to flag registers
alget*/alset* read/write byte/word/long single element or array
almapload load a program file on to a processor
almapsdram return pointer to SDRAM
alopen open a device (processor)
alputargs pass argc/argv arguments to target processor
alsyscall process system calls from a target processor
alsyscallext process system call, with extensions
alsyscallserver spin off a system call server thread
alsyscallserver_stop stop a system call server thread
alsyscallserver_wait wait on a system call server thread
VtoP convert target virtual to physical address

 26

aladdr

C Usage:

#include <allib.h>
ADDR aladdr (char *name)

Arguments

name Name of a program global symbol

Description:

The aladdr function returns the virtual address of the variable given by
the string input argument name. The symbol table information in the
currently loaded target executable file is examined to resolve the
address.

Function aladdr may only be called after a call to almapload. Only the
symbols loaded by the most recent call to almapload may be referenced
by aladdr.

The virtual address returned by aladdr is the variable’s address taken as
though the program image were relocated to a TM with SDRAM located
at PCI address 0. In other words, the virtual address from aladdr is the
offset from SDRAM start for that processor.

The returned virtual address should be converted to a physical address
with a call to VtoP for use in functions alget[bwl][a], and alset[bwl][a].

NOTE: There is significant overhead in executing the aladdr call. If the
address of a symbol is to be used more than once, it is recommended
that aladdr be called once and the value saved in a program variable.

Return Values:

Function aladdr returns a 32 bit unsigned address, or zero if the variable
address could not be found.

Example:

ADDR virtadd;
virtadd = aladdr(“_shared_buffer”);
if (virtadd == 0) {
printf (“FATAL: aladdr failed\n”);
 }

 27

alclose

C Usage:

#include <allib.h>
int alclose (int proc)

Arguments:

proc Target processor unit number

Description:

The alclose function closes target processor specified by the proc
argument. This function should be called before the Host application
exits.

Return Values:

None.

Example:

int proc=0;
alclose(proc);

 28

aldev

C Usage:

#include <allib.h>
int aldev (int proc)

Arguments

proc Target processor unit number

Description:

The aldev function selects the processor specified by the proc argument to be the
active device for subsequent calls (until the next aldev call). This function should be
called after the processor is opened using alopen.

Return Values:

SUCCESS Function succeeded
FAILURE Function failed, device not opened

Example:

int proc;

for (proc=0; proc<8; proc++) {
 alopen(proc);
 aldev(proc);
 almapload(“prog”, 0x10000);
 }

 29

alflagregs

C Usage:

#include <allib.h>
volatile unsigned long *alflagregs (int dev)

Arguments

dev The processor to access

Description:

This function returns a host mapped virtual address that may be used to
directly access the flag registers on TriMedia dev. The
MAX_FLAG_REGS locations may be used in any way desired by the
application

Return Values:

non-null Pointer mapped flag register
null The mapping failed

 30

algetb, algetw, algetl, algetba, algetwa’ algetla’ alsetb. Alsetw.
Alsetl, alsetba. Alsetwa & alsetla

C Usage:

#include <allib.h>
int algetb (ADDR physadd)
int algetw (ADDR physadd)
long algetl (ADDR physadd)
int algetba (ADDR physadd, char *buf, int n)
int algetwa (ADDR physadd, short *buf, int n)
long algetla (ADDR physadd, long *buf, int n)
int alsetb (ADDR physadd, int value)
int alsetw (ADDR physadd, int value)
long alsetl (ADDR physadd, long value)
int alsetba (ADDR physadd, char *buf, int n)
int alsetwa (ADDR physadd, short *buf, int n)
long alsetla (ADDR physadd, long *buf, int n)

Arguments

physadd A physical address in the processor program. Use
function aladdr to get a program virtual address and
VtoP to translate a virtual address to its
corresponding physical address.

buf A pointer to a host buffer

n The number of bytes, words, longwords to be
transferred

value The byte, word or long value to write to processor
address physadd.

Description:

These functions transfer data between a Host program and a buffer in
target processor memory. The alget functions transfer data from the
processor buffer to a host buffer while the alset functions transfer data
from host memory to processor memory. The memory transfer is
performed on the processor that is selected by the aldev function. These
functions allow the host to read and write processor memory.

The algetba, algetwa, algetla, alsetba, alsetwa, and alsetla functions
transfer arrays of bytes, 16-bit words or 32-bit longwords between the
processor buffer specified by argument physadd and the host buffer
specified by argument buf. The size of both buffers must be at least n
bytes, words, or longwords as appropriate.

The algetb, algetw, algetl, alsetb, alsetw, and alsetl functions transfer
a single byte, word or longword between processor board memory and
host memory. In the case of the alget functions, the value read from
processor board physical address physadd is the function return value.
The alset functions write the byte, word or longword in argument value to
physical address physadd.

 31

Buffers that are shared by the host and target processors should be
uncached. Functions alsetb, alsetw, and alsetl may perform a read-
modify-write in processor memory. Data could be overwritten if user
software allows the host and TriMedia application to modify the same
buffer in processor memory at the same time.

Return Values:

algetb byte at address physadd
algetw 16-bit word at address physadd
algetl 32-bit longword at address physadd
algetba SUCCESS or FAILURE
algetwa SUCCESS or FAILURE
algetla SUCCESS or FAILURE
alsetb none
alsetw none
alsetl none
alsetba SUCCESS or FAILURE
alsetwa SUCCESS or FAILURE
alsetla SUCCESS or FAILURE

Example:

/* Host Program /
char hostbuf[SIZE]; / input-output data /
ADDR V_func;
ADDR V_procadd, P_procadd;

V_func = aladdr(“_func”);
V_procadd = aladdr(“_global_array”);
P_procadd = VtoP(V_procadd);

alsetba(P_procadd, hostbuf, SIZE); / copy input to TM /
alcall(V_func, 1, (long) V_procadd); / process data /
alwait();

algetba(P_procadd, hostbuf, SIZE); / retrieve output
data */

 32

almapload

C Usage:

#include <allib.h>
int almapload (char *filename, long stacksize)

Arguments:

filename TriMedia executable file residing on Host disk file system.

stacksize Not used by ALRT

Description:

Function almapload loads the TriMedia executable file given by filename
into the active processor memory using memory management.
Argument filename should be a file residing within the Host file system.
The file should be a TriMedia executable image. The stacksize argument
is ignored.

Upon completion of almapload, the on-board TriMedia processor reset is
deasserted and program execution begins at the function main.

After a call to almapload, the Host program may look up the virtual
addresses of TM program symbols using the function aladdr. Only the
symbols loaded by the most recent call to almapload may be referenced
by aladdr.

The TM processor requires access to two resources, the MMIO space,
and the SDRAM space. The physical location of these resources are
assigned by the BIOS or OS as part of the PCI bus configuration. The
TM uses the physical addresses of the resources when accessing them.
Since the TM program code and data are executed out of SDRAM, all
references to these addressed items must be adjusted to the actual PCI
address where they are located. almapload does this for each TM
loaded.

Return Values:

SUCCESS Function succeeded
FAILURE Function failed, device not opened

Example:

alopen (0);
aldev (0);
almapload(“filename”, 0x0L);

 33

almapsdram

C Usage:

#include <allib.h>
void *almapsdram (int dev, unsigned long addr)

Arguments

Dev The processor to access
addr Physical address to convert

Description:

This function returns a host mapped virtual address that may be used to
indirectly access the SDRAM physical address addr on TriMedia device
dev.

Return Values:

non-null Pointer to requested SDRAM
null The address was invalid

Example:

int dev = 0;
volatile unsigned long *flags = alflagregs (dev);
char *buf;

/*--- wait for TM to pass us its buffer address ---*/
while (!flags[0])
 ;

/*--- Stash the buffer address ---*/

buf = almapsdram (dev, flags[0]);
if (!buf)
 printf (“ERROR: almapsdram failed\n”);

 34

alopen

C Usage:

#include <allib.h>
int alopen (int proc)

Arguments

Proc The target processor unit number. Normally,
the first target is unit 0.

Description:

The alopen function opens the target processor specified by argument
proc. The value 0 is returned if the open is successful, -1 otherwise.
This function must be called on a processor before any other Host library
functions can use that processor.

Return Values:

SUCCESS Device present. Open succeeded.
FAILURE Open failed.

Example:

int proc;
int fd[MAX_TM_DEVS];

for (proc=0; proc<MAX_TM_DEVS; proc++) {
 fd[proc] = alopen (proc);
 if (fd[proc]==SUCCESS) {
 printf (“Processor[%d] opened\n”, proc);
 }
 }

 35

alputargs

C Usage:

#include <allib.h>
int alputargs (int argc, char *argv[])

Arguments

Argc number of arguments passed in argv
Argv array of pointers to null terminated argument strings

Description:

This function is used to pass argc/argv parameters to the active target
processor. It must be called after device open (alopen) and device
selection (aldev) but prior to program load (almapload). The array of
argv strings must reference data that remains present until after the
almapload call. The arguments are passed to the target processor using
the system call service mechanism, so the host application must enter a
wait for system call loop to utilize this facility.

Return Values:

SUCCESS Function succeeded
FAILURE Function failed, device not opened

Example:

int main (int argc, char *argv[])
{
int proc = 0;

 if (alopen (proc)) error ();
 aldev (proc);
 /* pass all but first argument */
 alputargs (argc – 1, argv + 1);
 if (almapload (infile, 0)) error ();

 /* begin waiting for system calls */
}

 36

alsyscall

C Usage:

#include <allib.h>
int alsyscall (int proc)

Arguments:

proc The processor whose system calls are to be
serviced

Description:

This function services any system call requests that are pending for the
processor given by proc. If the target has requested an exit() call,
alsyscall returns non-zero, otherwise a 0 value is returned.

Return Values:

SUCCESS Function succeeded
non-zero an Exit call was requested

Example:

 37

alsyscallext

C Usage:

#include <allib.h>
int alsyscallext (int proc, int (*pf)(int proc, int request,
 unsigned long args[])

Arguments:

proc The processor whose system calls are to be
serviced

pf pointer to extended system call handler
request system call request number
args array of 32 bit arguments

Description:

This function services any system call requests (including extended
system calls) pending for the processor given by proc. If the target has
requested an exit() call, alsyscallext returns non-zero, otherwise a 0
value is returned. If an extended system call is requested, alsyscallext
will invoke the function pf if non-null, passing the system call number and
up to MAX_SYSCALL_ARGS unsigned long arguments. Token
SYSCALL_EXT_START may be used by both Host and TriMedia
programs as the base code for extended system calls.

Return Values:

SUCCESS Function succeeded
non-zero an Exit call was requested

Example:

int userext (int dev, int cmd, unsigned long args[])
 {
 switch (cmd)
 {
 case SYSCALL_EXT_START:

 printf (“got command 2000: args %08X %08X%08X\n”,
 args[0], args[1], args[2]);
 default:
 return –1;
 }
}

// In main program
int dev = 0;
int rval;

for (;;)
{
 rval = ioctl_alfast (dev, IOCTL_INTWAIT);
 if (rval)
 {

 38

 printf (“awoken by signal\n”);
 return;
 }
 rval = alsyscallext (dev, userext);
 if (rval)
 {
 printf (“TM %d terminated\n”);
 return;
 }
}

 39

alsyscallserver

C Usage:

#include <allib.h>
int alsyscallserver (int dev, int (*callback)(int dev, int
request, unsigned long args[]), char *cwd)

Arguments

dev The processor whose system calls are to be serviced

callback pointer to extended system call handler

request system call request number

args array of 32 bit arguments

cwd current working directory

Description:

This function spins off a thread to handle system call requests from the
TriMedia processor given by dev. The argument callback, if non-null, is
invoked (as in alsyscallext) when an extended system call request is
encountered. The argument cwd, if non-null specifies a filesystem path
to a directory that the system call service thread uses as the current
working directory. If cwd is null, then the current working directory for the
calling thread is used.

Return Values:

SUCCESS Function succeeded

non-zero The system call server thread could not be started

Example:

int rval;
int dev = 0;

alopen (dev);
aldev (dev);
almapload (dev, “program.out”, 0);
alsyscallserver (dev, NULL, NULL);
alyscallserver_wait (dev);

 40

alsyscallserver_stop

C Usage:

#include <allib.h>
int alsyscallserver_stop (int dev)

Arguments

Dev Processor whose system calls are being handled.

Description:

This function terminates the system call server for the processor given by dev.

Return Values:

SUCCESS Function succeeded

non-zero The wait failed

Example:

int dev = 0;
alsyscallserver (dev, NULL, NULL);
alsyscallserver_stop (dev);

 41

alsyscallserver_wait

C Usage:

#include <allib.h>
int alsyscallserver_wait (int dev)

Arguments

dev Processor whose system calls are to be serviced

Description:

This function waits until the host thread started (with alsyscallserver) for
processor dev has completed. The call to alsyscallserver_wait returns
when the TriMedia program completes, either by calling exit() or by
encountering an exception.

Return Values:

SUCCESS Function succeeded

non-zero The wait failed

Example:

int dev = 0;

alsyscallserver (dev, NULL, NULL);
alsyscallserver_wait (dev);

 42

VtoP

C Usage:

#include <allib.h>
ADDR VtoP (ADDR vaddr)

Arguments

vaddr A virtual address

Description:

Function VtoP returns the physical address corresponding to the virtual
address given by vaddr. VtoP returns the value zero if the virtual address
is not mapped to a physical address.

Host calls to alget and alset require the physical PCI address. The
physical address is the actual PCI address. Function VtoP returns the
physical address corresponding to a given virtual address for the active
processor.

When the TM processor passes a target virtual address to the Host, the
target virtual address should be treated as a physical address, and not
passed to VtoP. VtoP should be used only for addresses that come from
aladdr.

Return Values:

VtoP physical address of vaddr on processor 0

Zero Address not valid

Example:

ADDR Vadd, Padd;
Vadd = aladdr(“symbol_name”);
Padd = VtoP(Vadd);

 43

V. ALRT HOST DRIVER-LEVEL FUNCTIONS

The functions documented in this section provide lower level access to the ALRT device driver.
These functions are independent of the operating system. Except for ioctl_alfast, these functions
are not recommended for use by applications. The same functionality is available via the ALRT
Host Library API. The driver-level functions may be of assistance in some development
situations.

The following device driver interface functions are provided:

close_alfast close device
ioctl_alfast perform I/O control function
open_alfast open device
read_alfast read from SDRAM
seek_alfast set read/write seek address
write_alfast write to SDRAM

 44

close_alfast

C Usage:

#include <allib.h>
int close_alfast (int dev)

Arguments

dev The processor to close

Description:

This function closes the TriMedia device given by dev.

Return Values:

SUCCESS Function succeeded

FAILURE Close failed

Example:

int dev = 0;
int rval;

rval = close_alfast (dev);
if (rval)
printf (“ERROR: close_alfast %d failed\n”);

NOTE: Applications should use alclose rather than close_alfast.

 45

ioctl_alfast

C Usage:

#include <allib.h>
int ioctl_alfast (int dev, int cmd, …)

Arguments:

dev The processor to access

cmd The I/O command to execute

Description:

This function performs various I/O control functions on the TM processor dev
(previously opened with a call to alopen). Here are the available commands in
alphabetical order.

int ioctl_alfast (dev, ALF_DMABUF_MAP, *dmabuf_map_t map)

typedef struct {
 unsigned long vaddr;
 int len;
} dmabuf_map_t;

This function is used to map a kernel-resident DMA buffer into user address space.

Note: Kernel-resident DMA buffers are not supported at Release 1.4 of ALRT.

int ioctl_alfast (dev, ALF_IOCTL_DMABUF_ALLOC, dmabuf_alloc_t *dmabuf)

typedef struct {
 int len;
} dmabuf_alloc_t;

This function requests that an allocation of a kernel-resident DMA buffer of len bytes
be made. The allocation will fail if kernel resources are not available or a DMA buffer
has been previously allocated without being freed.

Note: Kernel-resident DMA buffers are not supported at Release 1.4 of ALRT.

int ioctl_alfast (dev, ALF_IOCTL_DMABUF_FREE)

This function frees a kernel resident DMA buffer that was allocated using
IOCTL_DMABUF_ALLOC. Any mapping made with IOCTL_DMABUF_MAP is
freed.

Note: Kernel-resident DMA buffers are not supported at Release 1.4 of ALRT.

int ioctl_alfast (dev, ALF_IOCTL_DMABUF_QUERY, *dmabuf_query_t query)

typedef struct {
 unsigned long physaddr;
 int len;
} dmabuf_query_t;

 46

This function queries the current kernel DMA buffer attributes, placing the results in
query. The element physaddr is set to the address that an I/O device would use to
access the DMA buffer.

Note: Kernel-resident DMA buffers are not supported at Release 1.4 of ALRT.

int ioctl_alfast (dev, IOCTL_ASSERT_RESET)

This function asserts the processor reset of the TriMedia given by the argument dev.

int ioctl_alfast (dev, IOCTL_DEASSERT_RESET)

This function deasserts the processor reset of the TriMedia given by argument dev.

int ioctl_alfast (dev, IOCTL_GET_CLOCK_SPEED, unsigned long *presult)

This function returns the processor clock speed in Hz of the TriMedia given by dev.
The result is written to the address given by presult

int ioctl_alfast (dev, IOCTL_GET_DINFO, get_dinfo_t *presult)

This function fills the get_dinfo_t structure pointed to by presult. The
get_dinfo_t structure is declared as follows:

typedef struct {
 unsigned long dev
 unsigned long sdram_base;
 unsigned long sdram_size;
 unsigned long mmio_base;
 unsigned long mmio_size;
 unsigned long ireq;
 int bus;
 int slot;
 char version[VERSION_LENGTH]
} get_dinfo_t;

Where:

Dev TriMedia device
Sdram_base physical address of SDRAM
Sdram_size size in bytes of SDRAM
mmio_base physical address of MMIO space
mmio_size size in bytes of MMIO space
Irq Interrupt request line used by TriMedia
Bus PCI bus
Slot PCI slot (device)
Version[] text string identifying driver version

 47

int ioctl_alfast (dev, IOCTL_GET_FLAGREGS_BASE, volatile unsigned long
**presult)

This function returns a host mapped virtual address of the flagregs[] region of
shared memory. The value returned may be used as a pointer by the host software.

Note: this function is identical in functionality to alflagregs

int ioctl_alfast (dev, IOCTL_GET_MMIO_BASE, unsigned long *presult)

This function returns the physical base address of the MMIO space of the TriMedia
given by dev. The result is written to the address given by presult.

int ioctl_alfast (dev, IOCTL_GET_SDRAM_BASE, unsigned long *presult)

This function returns the physical base address of the SDRAM space of the TriMedia
given by dev. The result is written to the address given by presult.

int ioctl_alfast (dev, IOCTL_GET_SDRAM_SIZE, unsigned long *presult)

This function returns the size in bytes of the SDRAM space of the TriMedia given by
dev. The result is written to the address given by presult.

int ioctl_alfast (dev, IOCTL_INTWAIT)

This function waits for a system call interrupt from the TriMedia given by dev.

int ioctl_alfast (dev, IOCTL_MMIO_READ, int offset, unsigned long *presult)

This function reads the MMIO register of device dev offset by offset bytes. The result
is stored into the address given by argument presult.

int ioctl_alfast (dev, IOCTL_MMIO_WRITE, int offset, unsigned long value)

This function writes value to the MMIO register offset by offset bytes of the TriMedia
given by dev.

Return Values:

SUCCESS Function succeeded

non-zero an Exit call was requested

Example:

 48

open_alfast

C Usage:

#include <allib.h>
int open_alfast (int dev)

Arguments:

dev The processor to open

Description:

This function attempts to open the TriMedia device given by dev.

Return Values:

SUCCESS Function succeeded

FAILURE Open failed

Example:

int dev = 0;
int rval;

rval = open_alfast (dev);
if (rval)
 printf (“ERROR: open_alfast %d failed\n”);

NOTE: Applications should use alopen rather than open_alfast.

 49

read_alfast

C Usage:

#include <allib.h>
int read_alfast (int dev, void *buf, unsigned n)

Arguments

dev The processor to open

buf host buffer address

n number of bytes to transfer

Description:

This function reads n bytes from the SDRAM of device dev to the host
buffer buf. The TriMedia SDRAM address used is the one specified by
the current seek address as set by seek_alfast or by another
read_alfast or write_alfast.

Upon completion, the current seek address is updated to the byte
following the last byte read.

The request will fail if the range given by the current seek address and
length falls outside the range of SDRAM for the device.

Return Values:

SUCCESS Function succeeded

FAILURE Read failed

Example:

int dev = 0;
int rval;
char buf[1000];

ADDR addr = 0xdc000000;
rval = seek_alfast (dev, addr);
if (!rval)
 rval = read_alfast (dev, buf, sizeof (buf));
if (rval)
 printf (“ERROR: seek or read failed\n”);

NOTE: Applications should use alget* rather than read_alfast.

 50

seek_alfast

C Usage:

#include <allib.h>
int seek_alfast (int dev, ADDR addr)

Arguments

dev The processor to open

addr Seek address to set

Description:

This function sets the current seek address for subsequent calls to
read_alfast and write_alfast. The value addr is set for dev. addr is a
processor physical address.

Return Values:

SUCCESS Function succeeded

FAILURE Seek failed

Example:

int dev = 0;
int rval;
ADDR addr = 0xdc000000;
rval = seek_alfast (dev, addr);
if (rval)
printf (“ERROR: seek_alfast %d failed\n”);

NOTE: Application programs should use the alget* and alset* functions
rather than seek_alfast.

 51

write_alfast

C Usage:

#include <allib.h>
int write_alfast (int dev, void *buf, unsigned n)

Arguments

dev The processor to open

buf host buffer address

n number of bytes to transfer

Description:

This function writes n bytes from the host buffer buf to the SDRAM of
device dev. The TriMedia SDRAM address used is the one specified by
the current seek address as set by seek_alfast or by another
read_alfast or write_alfast.

Upon completion, the current seek address is updated to the byte
following the last byte written.

The request will fail if the range given by the current seek address and
length falls outside the range of SDRAM for the device.

Return Values:

SUCCESS Function succeeded

FAILURE Read failed

Example:

int dev = 0;
int rval;
char buf[1000];
ADDR addr = 0xdc000000;
rval = seek_alfast (dev, addr);
if (!rval)
rval = write_alfast (dev, buf, sizeof (buf));
if (rval)
printf (“ERROR: seek or write failed\n”);

NOTE: Applications should use alset* rather than write_alfast.

 52

VI. UTILITY PROGRAMS

This reference section provides information on the following utility programs. These programs are
executed at the OS prompt.

tmdump Display TM’s MMIO registers
tmload Load a TM program
tmmemtest Run quick memory test on a TM’s SDRAM
tmmkdef List TM’s I/O mappings
tmmpload Load multiple TM programs
tmreset Reset TM
tmtest Verify HW & SW installation, list TM configurations

 53

tmdump

Usage:

tmdump [-d device]

Command Line Options:

-d device Specifies which TM processor to display

Description:

The tmdump program displays the MMIO registers of the selected TM
processor; if no dev is specified, processor 0 is the default. Output is
directed to host standard output.

 54

tmload

Usage:

tmload [-d dev] program arg1 arg2 …

Command Line Options:

-d dev Specifies which TM processor to load and run on

program TM executable file to load

arg1, … Arguments passed to main (argc, argv) of the TM
program

Description:

The tmload program loads the program given by argument program on
the TM processor given by argument –d dev. dev is an integer ranging
from 0 to the number of TMs less 1; if no dev is specified, processor 0 is
the default. Arguments arg1, … are passed to the TM program’s main
entry point.

Following successful loading, tmload waits for interrupts from the TM
indicating a system call request or termination.

 55

tmmemtest

Usage:

tmmemtest [-d dev]

Command Line Options:

-d dev Specifies which TM processor to run the memory test
on

Description:

The tmmemtest program performs a single write/read memory test of
the selected TM’s SDRAM, reporting the number of byte compare errors
detected. If no dev is specified, processor 0 is the default.

 56

tmmkdef

Usage:

tmmkdef

Command Line Options:

 none

Description:

The tmmkdef program displays hardware mappings and settings for all
TM processors. Output is directed to host standard out and will show
one line per TM in a format similar to the following:

133333333 0xDB000000 0xDB800000 0x00800000
133333333 0xDA000000 0xDA800000 0x00800000
133333333 0xD3000000 0xD3800000 0x00800000
133333333 0xD2000000 0xD2800000 0x00800000
133333333 0xD0000000 0xD0800000 0x00800000
133333333 0xD1000000 0xD1800000 0x00800000

Column 1 is the processor clock frequency, column 2 is the MMIO base
address, column 3 is the SDRAM base address, and column 4 the
SDRAM size.

 57

tmmpload

Usage:

tmmpload –exec prog1 arg1 … -exec prog2 arg1 …

Command Line Options:

-exec option delimiter introducing the program and arguments
for each processor in turn

prog1,2 TM program to load on the first, second, … TriMedia

arg1, … Arguments for each program instance

Description:

The tmmpload program is used to load multiple TriMedia programs with
a single command. tmmpload can load a different program executable
on each TM, each with its own set of arguments. The program and
arguments for each TM are introduced on the command line by an –
exec option.

The following example starts the programs a.out, b.out, c.out, and d.out
on TriMedia’s 0, 1, 2 and 3. Each program is passed an arbitrary set of
arguments:

tmmpload –exec a.out 0 –exec b.out 1 1 –exec c.out 2 2 2 –
exec d.out 3 3 3 3

 58

tmreset

Usage:

tmreset [-d dev | -a]

Command Line Options:

-d dev Specifies which TM processor to reset

-a Reset all TM processors

Description:

The tmreset program performs a hardware reset on the TM processor
selected with –d dev) or on all processors (with –a). If no processor is
specified, processor 0 is the default.

 59

tmtest

Usage:

tmtest

Command Line Options:

 none

Description:

The tmtest program runs a short series of host and TriMedia programs
to establish the correct configuration and software installation. (Note: this
program is identical to the usertest program that may be run under
TMMAN). When properly installed a display appears similar to the
following:

 60

VII. ALRT TRIMEDIA RUNTIME REFERENCE

A. Error Control

Most all library function will return with a result code. The following is a list of (some of the)
result codes:

ALF_RUNTIME_NOERROR returned if successful – has the value
zero

ALF_RUNTIME_ERROR_NOMEM a memory allocation failure occurred.
ALF_RUNTIME_ERROR_BADPARM an invalid parameter was passed to a

function
ALF_RUNTIME_ERROR_BUSY the underlying subsystem was busy and

unavailable
ALF_RUNTIME_ERROR_OVERFLOW an output buffer overflow occurred
ALF_RUNTIME_ERROR_TIMEOUT the function did not complete in the

expected time
ALF_RUNTIME_ERROR_NOTIMPLEMENTED the requested function is not

implemented in this version of the library

B. Functions

tmfast_flagregs Return pointer to TM’s own flag registers
tmfast_flagregs_m Return pointer to flag registers on other TM
tmfast_syscall Send extended system call to Host program

 61

tmflagregs

Name

tmfast_flagregs

Usage

#include <alfast_tm.h>
volatile unsigned long *tmfast_flagregs (void)

Description

This function returns a pointer to the flag registers.

Return Values

non-null returned pointer to flag registers

Null error occurred

Examples

/*--- Set flagregs 0 to address of data buffer ---*/

extern char buf[];
volatile unsigned long flagregs = tmfasg_flagregs ();

flagregs[0] = (unsigned long) buf;

 62

tmfast_flagregs_m

Name

tmfast_flagregs_m

Usage

#include <alfast_tm.h>
volatile unsigned long *tmfast_flagregs_m (int node)

Description

This function returns a pointer to the flag registers of the TM processor
given by argument node.

Return Values

non-null returned pointer to flag registers
Null error occurred

Examples

/*--- Set flagregs 0 of TM 2 to address of data buffer ---*/

extern char buf[];
volatile unsigned long *flagregs2 = tmfasg_flagregs_m (2);

flagregs2[0] = (unsigned long) buf;

 63

mfast_syscall

Name:

tmfast_syscall

Usage:

#include <alfast_tm.h>int tmfast_syscall (int cmd, int
nargs, unsigned long args[], int *pret)

Description:

This sends the requested extended system call to the host. The
argument cmd specifies system call number, args[] contains nargs
arguments that are passed to the host. args must contain
MAX_SYSCALL_ARGS arguments or less Upon completion *pret (if
non-null) will contain the system call return value.

Return Values:

ALF_RUNTIME_NOERROR no error
ALF_RUNTIME_ERROR_BADPARM invalid parameter was

passed

Examples:

#define CMD1 2000
#define CMD2 2001
unsigned long args[3];
int rval;
int sc_return;
args[0] = first_arg;
args[1] = next_arg;
args[2] = last_arg;

/* 3 arguments, and a return */
rval = tmfast_syscall (CMD1, 3, args, &sc_return);
if (rval)
 printf (“ERROR: syscall failed\n”);
else
 printf (“syscall returned %d\n”, sc_return);

/* no args or return on this call */rval = tmfast_syscall
(CMD2, 0, NULL, NULL);

 64

VIII. ALRT DEVICE DRIVER REFERENCE

The ALRT Device Driver is implemented as three separate drivers, one each for the TriMedias,
the S3 ViRGE, and the PCI-to-PCI bridge.

A. Trimedia Device Driver

 int open (char *path, int oflag, …)

The open function establishes a connection with the TM device given by path. The device
name for TM processors is /dev/alfast_tm<n> where <n> indicates the device instance.

 int close (int filedes)

The close function disconnects access to the device.

 void *mmap (void *addr, size_t len, int prot, int flags, int filedes, off_t off)

This function is used to map TM device resources into the application address space. Refer
to Unix man-pages for details on the call. The off argument specifies the offset into the
address space. Since there are two distinct address spaces for the TM (one for MMIO, one
for SDRAM), the high order nibble of off specifies which address space to map.

0x0xxxxxxx map SDRAM

0x1xxxxxxx map MMIO

 Int ioctl (int filedes, ALF_IOCTL_INTWAIT)

This function blocks the calling thread until a TM interrupt is received.int ioctl (int filedes,
ALF_IOCTL_GET_DINFO, Unix_get_dinfo_t *dinfo)

typedef struct {
 int dev;
 unsigned long sdram_base;
 unsigned long sdram_size;
 unsigned long mmio_base;
 unsigned long mmio_size;
 int bus;
 int devfunc;
 char version[VERSION_LENGTH];
} Unix_get_dinfo_t;

This function retrieves device information from the driver using the Unix_get_dinfo_t
structure.

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_BYTE, unsigned char *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_SHORT, unsigned short *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_LONG, unsigned long *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_BYTE, unsigned char result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_SHORT, unsigned short result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_LONG, unsigned long result)

These functions perform PCI configuration space reads and writes to the TM device.

 Int ioctl (int filedes, ALF_IOCTL_DMABUF_ALLOC, dmabuf_alloc_t *dmabuf)

 65

typedef struct {
int len;
} dmabuf_alloc_t;

This function requests that an allocation of a kernel resident dma buffer of len bytes be made.
The allocation will fail if kernel resources are not available, or a dma buffer has been
previously allocated without being freed.

 Int ioctl (int filedes, ALF_IOCTL_DMABUF_FREE)

This function frees a kernel resident DMA buffer that was allocated using
IOCTL_DMABUF_ALLOC. Any mapping made with IOCTL_DMABUF_MAP will be freed.int
ioctl (int filedes, ALF_IOCTL_DMABUF_QUERY, *dmabuf_query_t query)

typedef struct {
 unsigned long physaddr;
 int len;
} dmabuf_query_t;

This function queries the current kernel DMA buffer attributes, placing the results in query.
The element physaddr is set to the address that an I/O device would use to access the dma
buffer.int ioctl (int filedes, ALF_DMABUF_MAP, *dmabuf_map_t map)

typedef struct {
 unsigned long vaddr;
 int len;
} dmabuf_map_t;

This function is used to map the dma buffer into user address space.

 66

B. S3/Virge Device Driver

 int open (char *path, int oflag, …)

The open function establishes a connection with the S3 device given by path. The device
name for S3 is /dev/alfast_t3<n> where <n> indicates the device instance.

 Int close (int filedes)

The close function disconnects access to the device.

 void *mmap (void *addr, size_t len, int prot, int flags, int filedes, off_t off)

This function is used to map S3 device resources into the application address space. Refer
to Unix man-pages for details on the call. The off argument specifies the offset into the
address space. Since there are two distinct address spaces for the S3 (one for display
memory, and control registers), the high order nibble of off specifies which address space to
map.

0x0xxxxxxx map display memory

0x1xxxxxxx map control registers

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_BYTE, unsigned char *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_SHORT, unsigned short *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_LONG, unsigned long *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_BYTE, unsigned char result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_SHORT, unsigned short result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_LONG, unsigned long result)

These functions perform PCI configuration space reads and writes to the S3 device.

 67

C. PCI to PCI Bridge Device Driver

 int open (char *path, int oflag, …)

The open function establishes a connection with the bridge device given by path. The device
name is /dev/alfast_bridge<n> where <n> indicates the device instance.

 int close (int filedes)

The close function disconnects access to the device.

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_BYTE, unsigned char *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_SHORT, unsigned short *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_READ_LONG, unsigned long *result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_BYTE, unsigned char result)

 int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_SHORT, unsigned short result)

 Int ioctl (int filedes, ALF_IOCTL_PCICFG_WRITE_LONG, unsigned long result)

These functions perform PCI configuration space reads and writes to the TM device.

 68

IX. TROUBLESHOOTING

There are several things you can try before you call Alacron Technical Support for help.

_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure you didn’t miss a page or a
section.

_____ Go back over the software installation to make sure you have installed all necessary
software.

_____ Run the Installation User Test to verify correct installation of both hardware and
software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the Alacron CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\alacron\alinfo

_____ Compile and run the example programs found in the directory:
\usr\alacron\src\examples

_____ Find the appropriate section of the Programmer’s Guide & Reference or the Library
User’s Manual for the particular library and problem you are experiencing. Go back
over the steps in the guide.

_____ Check the programming examples supplied with the runtime software to see if you are
using the software according to the examples.

_____ Review the return status from functions and any input arguments.

_____ Simplify the program as much as possible until you can isolate the problem. Turning
off any operations not directly related may help isolate the problem.

_____ Finally, first save your original work. Then remove any extraneous code that doesn’t
directly contribute to the problem or failure.

 69

X. ALACRON TECHNICAL SUPPORT

Alacron offers technical support to any licensed user during the normal business hours of 9
a.m. to 5 p.m. EST. We offer assistance on all aspects of processor board and PMC
installation and operation.

A. Contacting Technical Support

To speak with a Technical Support Representative on the telephone, call the number below
and ask for Technical Support:

Telephone: 603-891-2750

If you would rather FAX a written description of the problem, make sure you address the FAX
to Technical Support and send it to:

Fax: 603-891-2745

You can email a description of the problem to support@alacron.com

Before you contact technical support have the following information ready:

_____ Serial numbers and hardware revision numbers of all of your boards. This
information is written on the invoice that was shipped with your products.

_____ Also, each board has its serial number and revision number written on either in ink or
in bar-code form.

_____ The version of the ALRT, ALFAST, or FASTLIB software that you are using.

_____ You can find this information in a file in the directory: \usr\alfast\alinfo

_____ The type and version of the host operating system, i.e., Windows 98.

_____ Note the types and numbers of all your software revisions, daughter card libraries,
the application library and the compiler

_____ The piece of code that exhibits the problem, if applicable. If you email Alacron the
piece of code, our Technical-Support team can try to reproduce the error. It is
necessary, though, for all the information listed above to be included, so Technical
Support can duplicate your hardware and system environment.

 70

B. Returning Products for Repair or Replacements

Our first concern is that you be pleased with your Alacron products.

If, after trying everything you can do yourself, and after contacting Alacron Technical Support,
you feel your hardware or software is not functioning properly, you can return the product to
Alacron for service or replacement. Service or replacement may be covered by your
warranty, depending upon your warranty.The first step is to call Alacron and request a “Return
Materials Authorization” (RMA) number.This is the number assigned both to your returning
product and to all records of your communications with Technical Support. When an Alacron
technician receives your returned hardware or software he will match its RMA number to the
on-file information you have given us, so he can solve the problem you’ve cited.

When calling for an RMA number, please have the following information ready:

_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications, daughter
cards, etc.

_____ A clear and detailed description of the problem and when it occurs

_____ Exact code that will cause the failure

_____ A description of any environmental condition that can cause the problem

All of this information will be logged into the RMA report so it’s there for the technician when
your product arrives at Alacron.Put boards inside their anti-static protective bags. Then pack
the product(s) securely in the original shipping materials, if possible, and ship to:

Alacron Inc.

71 Spit Brook Road, Suite 200
Nashua, NH 03060

USA

Clearly mark the outside of your package:

Attention RMA #80XXX

Remember to include your return address and the name and number of the person who
should be contacted if we have questions.

 71

C. Reporting Bugs

We at Alacron are continually improving our products to ensure the success of your projects.
In addition to ongoing improvements, every Alacron product is put through extensive and
varied testing. Even so, occasionally situations can come up in the fields that were not
encountered during our testing at Alacron.

If you encounter a software or hardware problem or anomaly, please contact us immediately
for assistance. If a fix is not available right away, often we can devise a work-around that
allows you to move forward with your project while we continue to work on the problem you’ve
encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help
if you create a stand-alone code module that is isolated from your application and yet clearly
demonstrates the anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@alacron.com

We will compile and run the module to track down the anomaly you’ve found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the
code to a disk, describe the error, and mail the disk to Technical Support at the Alacron
address below.

If the code is small enough, you can also:

FAX the code module to us at 603-891-2745

If you are faxing the code, write everything large and legibly and remember to include your
description of the error.

When you are describing a software problem, include revision numbers of all associated
software.

For documentation errors, photocopy the passages in question, mark on the page the number
and title of the manual, and either FAX or mail the photocopy to Alacron.

Remember to include the name and telephone number of the person we should contact if we
have questions.

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Telephone: 603-891-2750

FAX: 603-891-2745

Web site:
http://www.alacron.com/

Electronic Mail:

sales@alacron.com
support@alacron.com

