

 ���
���
���
���

��
��
��
��FASTSERIES

USER’S MANUAL
MACHINE VISION LIBRARY (MviL)

30002-00269

 Alacron Mvil User Manual

 Page ii of iv

COPYRIGHT NOTICE

Copyright 2003 by Alacron Inc.
All rights reserved. This document, in whole or in part, may not be copied, photocopied,
reproduced, translated, or reduced to any other electronic medium or machine-readable form
without the express written consent of Alacron Inc.

Alacron makes no warranty for the use of its products, assumes no responsibility for any error,
which may appear in this document, and makes no commitment to update the information
contained herein. Alacron Inc. retains the right to make changes to this manual at any time
without notice.

 Document Name: ALRT RT SW Programmer’s Guide & Reference User’s Manual

 Document Number: 30002-00169

 Revision History: 1.2 June 13, 2003

 1.3 Oct 23, 2003

Trademarks:
Alacron is a registered trademark of Alacron Inc.
Channel Link is a trademark of National Semiconductor
CodeWarrior is a registered trademark of Metrowerks Corp.
FastChannel is a registered trademark of Alacron Inc.
FastSeries is a registered trademark of Alacron Inc.
Fast4, FastFrame 1300, FastImage, FastI/O, and FastVision are registered
trademarks of Alacron Inc.
FireWire is a registered trademark of Apple Computer Inc.
3M is a trademark of 3M Company
MS DOS is a registered trademark of Microsoft Corporation
SelectRAM is a trademark of Xilinx Inc.
Solaris is a trademark of Sun Microsystems Inc.
TriMedia is a trademark of Philips Electronics North America Corp.
Unix is a registered trademark of Sun Microsystems Inc.
Virtex is a trademark of Xilinx Inc.
Windows, Windows 95, Windows 98, Windows 2000, and Windows NT
are trademarks of Microsoft All trademarks are the property of their respective holders.

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Telephone: 603-891-2750

Fax: 603-891-2745

Web Site:
http://www.alacron.com/

Email:

sales@alacron.com, or support@alacron.com

 Alacron Mvil User Manual

 Page iii of iv

Table of Contents
1 Introduction ___ 1

2 MViL Library: Pattern Recognition ____________________________________ 1

2.1 Control/Data Flow Diagrams_____________________________________ 1

2.2 Pattern Recognition API’s _______________________________________ 2

3 MViL Library: Calibration and Measurement ___________________________ 20

3.1 Control/Data Flow Diagrams____________________________________ 20

3.2 Required Classes for Calibration APIs____________________________ 25

3.3 Calibration API’s ___ 26

4 Required Classes for the Measurement Coordinate system: ________________ 31

4.1 Measurement Coordinate System API’s___________________________ 32

4.2 Required Classes for the Orientation APIs ________________________ 33

4.3 Orientation API’s ___ 34

4.4 Required Classes for the Measurement and Fit APIs ________________ 38

4.5 Measurement and Fit API’s_____________________________________ 40

4.6 Required Classes for the Spatial Metric Tool APIs__________________ 43

4.7 Spatial Metric Tool API’s ______________________________________ 44

4.8 Required Classes for the Photometric Tool APIs ___________________ 51

4.9 Photometric Tool API’s __ 52

5 MViL Library: Morphology__ 54

5.1 Control/DataFlows Diagrams ___________________________________ 54

5.2 Required Classes for the Thresholding APIs _______________________ 56

5.3 Thresholding API’s__ 58

5.4 Required Classes for the Structuring APIs ________________________ 60

5.5 Structuring API’s ___ 62

6 MViL Library: BLOB Analysis _______________________________________ 65

6.1 Labeling API’s__ 66

6.2 Required Classes for Unary Feature Extraction APIs _______________ 66

6.3 Unary Feature Extraction API’s _________________________________ 68

 Alacron Mvil User Manual

 Page iv of iv

6.4 Required Classes for Binary Feature Extraction APIs _______________ 72

6.5 Binary Feature Extraction APIs _________________________________ 73

7 Practical Demonstration of the FOIL APIs _____________________________ 75

7.1 Application of Pattern Matching Extension of FOIL Library _________ 75

7.2 Application of Calibration/Measurement Extension of FOIL Library __ 78

7.3 Application of Morphology/BLOB Analysis Extension of FOIL Library 88

8 TROUBLESHOOTING___ 96

9 ALACRON TECHNICAL SUPPORT _________________________________ 97

9.1 Contacting Technical Support___________________________________ 97

9.2 Returning Products for Repair or Replacements ___________________ 98

9.3 Reporting Bugs ___ 99

Alacron Mvil User Manual

Page 1 of 100

1 INTRODUCTION
In this document the APIs built for Pattern recognition, Calibration/Measurement subsystem,
Morphology and BLOB analysis within the MViL library are described.

This section will elicit the build procedure and code structuring of the various library components
in MVIL. MVIL library is constituted of 3 components – Pattern Recognition, Calibration &
Measurement and Morphology & BLOB Analysis. These are provided as template based api’s
structured in 3 files - MVIL_PatMatch.hpp, MVIL_Calibration.hpp and MVIL_Morph_Blob.hpp.
If the user need to use the MVIL template based library api’s in his applicaton he will have to
include the MVIL.hpp file after FOIL.hpp in his source file. As MVIL is an extension to FOIL
the necessary setting for FOIL is to be done. All the MVIL api’s expect the Images in the FOIL /
MVIL defined Image representation. So user will have to do a preprocessing of reading image
files of supported formats and populate that data into the FOIL / MVIL image data structures.
Most of the MVIL api’s expect the output of some other api execution results as inputs. These are
mentioned in arguments section across each api description with example. For more detailed
usage of these library components in real world scenario plese refer the last section in this
document.

2 MVIL LIBRARY: PATTERN RECOGNITION

2.1 Control/Data Flow Diagrams

Shape Based Pattern Matching

Alacron Mvil User Manual

Page 2 of 100

This section details the API’s built for Pattern Recognition within the MViL library. In the
description of each api the necessary input output components are mentioned

2.2 Pattern Recognition API’s

1. FOIL::ModelBuild()
2. FOIL::Locate()

Class: CImage Class

Description: This is a template-based class composing the basic Image abstraction
classes in FOIL. This class will hold the input image, patterns and mask
image that define the ROI.

Syntax: template < class imageClass, int imgType >

class CImage

{

 private:

Alacron Mvil User Manual

Page 3 of 100

Class: CImage Class

 int imageType;

 float imageAngle;

 float imageScale;

 public:

 imageClass MatrixImage;

 CImage()

 {

 imageType = imgType;

 }

 int getImageType (void)

 {

 return imageType;

 }

 void setImageAngle (float angle)

 {

 imageAngle = angle;

 }

 float getImageAngle(void)

 {

 return imageAngle;

 }

 void setImageScale(float scale)

 {

 imageScale = scale;

 }

 float getImageScale(void)

 {

 return imageScale;

 }

}

Alacron Mvil User Manual

Page 4 of 100

Class: CImage Class

Template
Parameters

ImageClass: Input should be of CImage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgTyp: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.

Member
Functions: getImageType: This will return the image type stores as part of

instantiation.

setImageAngle: This will set the angle of rotation of the stored image.

getImageAngle: This will get the angle of rotation of the stored image.

setImageScale: This will set the scale of rotation of the stored image.

getImageScale: This will get the scale of rotation of the stored image.

Alacron Mvil User Manual

Page 5 of 100

Class: CColourImage Class

Description: This is a template-based class that composes the basic Image abstraction
classes in FOIL for colour images.

Syntax: template < class imageClass, int imgType>

class CColourImage

{

private:

 int imageType;

 float imageAngle;

 float imageScale;

 public:

 imageClass* MatrixImage;

 CColourImage()

 {

 imageType = imgType;

 MatrixImage = new imageClass(10,10);

 }

 int getImageType (void)

 {

 return imageType;

 }

 void setImageAngle (float angle)

 {

 imageAngle = angle;

 }

 float getImageAngle(void)

 {

 return imageAngle;

 }

 void setImageScale(float scale)

 {

Alacron Mvil User Manual

Page 6 of 100

Class: CColourImage Class

 imageScale = scale;

 }

}
Template
Parameters

ImageClass: Input should be of CImage class type
 e.g.: CRGBPlanar8, CRGBPlanar16, etc.
ImgTyp: Input should be of integer type
 e.g.: RGBPLANAR8, RGBPLANAR16, etc.

Member
Functions: getImageType: This will return the image type stores as part of

instantiation.

setImageAngle: This will set the angle of rotation of the stored image.

getImageAngle: This will get the angle of rotation of the stored image.

setImageScale: This will set the scale of rotation of the stored image.

getImageScale: This will get the scale of rotation of the stored image.

Class: CImageModel Class

Description: This class will hold the basic image model that will represent the problem
space. While building the model, the object of this class will get
populated with the problem space.

Syntax: template <class imageClass, int imgTyp>

class CImageModel

{

private:

int patternCount;

int Invariance;

public:

 CImage <imageClass, imgTyp>InputImage;

 CImage <imageClass, imgTyp>inputImageMask;

CImage <imageClass, imgTyp>patternMask;

 std::vector<CImage<imageClass, imgTyp>> PatternList;

INDEX_HIERARCHY rotationIndex;

 INDEX_HIERARCHY scaleIndex;

 void incrPatternCount (void)

Alacron Mvil User Manual

Page 7 of 100

Class: CImageModel Class

{

 patternCount ++;

}

 int getPatternCount (void)

{

 return patternCount;

}

void setInvariance (int type)

{

 Invariance = type;

}

int getInvariance (void)

{

return Invariance;

}

}
Template
Parameters

ImageClass: Input should be of CImage class type.
 e.g.: CGrayImage8, CGrayImage16, CRGBPlanar8,
 CRGBPlanar16, etc.
ImgTyp: Input should be of integer type.
 e.g. : GRAY8, GRAY16, RGBPLANAR8, RGBPLANAR16, etc.

Member
Functions: incrPatternCount: This will increment the pattern count mainitained in

the class.

getPatternCount: This will get the pattern count set in the class.

setInvariance: This specifies the type of invariance supported in the
current model.

getInvariance: This will get the type of invariance supported in the
current model.

Class: CGeometricModel Class

Description: This class will hold both the image-based model and geometric-based
model. We could represent the same problem in both these models and
apply matching logic to them.

Alacron Mvil User Manual

Page 8 of 100

Class: CGeometricModel Class

Syntax: template < class imageClass, int imgTyp, class pointType >

class CGeometricModel

{

 private :

 int patternCount;

 int basePatternCount;

 public :

 CImage < imageClass, imgTyp > InputImage;

 CImage < imageClass, imgTyp > InputImageMask;

 std::vector <CPatternElement < imageClass, imgTyp, pointType >
* > PatternList;

 INDEX_HIERARCHY* rotationIndex;

 INDEX_HIERARCHY* scaleIndex;

 CGeometricModel()

 {

 patternCount = 0;

 basePatternCount = 0;

 }

 void incrPatternCount (void)

 {

 patternCount ++;

 }

 int getPatternCount (void)

 {

 return patternCount;

 }

 int getBasePatternCount (void)

 {

 return basePatternCount;

 }

Alacron Mvil User Manual

Page 9 of 100

Class: CGeometricModel Class

 void setBasePatternCount (int count)

 {

 basePatternCount = count;

 }

}
Template
Parameters

ImageClass: Input should be of CImage class type.
 e.g.: CGrayImage8, CGrayImage16, CRGBPlanar8,
 CRGBPlanar16, etc.
ImgTyp : Input should be of integer type.
 e.g.: GRAY8, GRAY16, RGBPLANAR8, RGBPLANAR16, etc.
PointType: The data type representing the point coordinates. This is
dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: incrPatternCount: This will increment the pattern count mainitained in

the class.

getPatternCount: This will get the pattern count set in the class.

getBasePatternCount: This will get the base pattern count stored in the
class.

setBasePatternCount: This will set the base pattern count stored in the
class.

Class: CCombinedModel Class

Description: This class will hold both the image-based model and geometric-based
model. We could represent the same problem in both these models and
apply matching logic to them.

Syntax: template < class imageClass, int imgTyp, class pointType >

class CCombinedModel

{

 private:

 model_type definedModel;

 int invariance;

 float scaleStart;

 float scaleStep;

 float scaleEnd;

Alacron Mvil User Manual

Page 10 of 100

Class: CCombinedModel Class

 float angleStart;

 float angleStep;

 float angleEnd;

 int rotatePatternCount;

 int scalePatternCount;

 public:

 CImageModel < imageClass, imgTyp > Image;

 CGeometricModel < imageClass, imgTyp, pointType >
Geometric;

 int getDefinedModel(void)

 {

 return definedModel;

 }

 void setDefinedModel (model_type modelType)

 {

 definedModel = modelType;

 }

 float getScaleStart(void)

 {

 return scaleStart;

 }

 float getScaleStep(void)

 {

 return scaleStep;

 }

 float getScaleEnd(void)

 {

 return scaleEnd;

 }

 void setScaleStart(float start)

 {

Alacron Mvil User Manual

Page 11 of 100

Class: CCombinedModel Class

 scaleStart = start;

 }

 void setScaleStep(float step)

 {

 scaleStep = step;

 }

 void setScaleEnd(float end)

 {

 scaleEnd = end;

 }

 float getAngleStart(void)

 {

 return angleStart;

 }

 float getAngleStep(void)

 {

 return angleStep;

 }

 float getAngleEnd(void)

 {

 return angleEnd;

 }

 void setAngleStart(float start)

 {

 angleStart = start;

 }

 void setAngleStep(float step)

 {

 angleStep = step;

 }

 void setAngleEnd(float end)

Alacron Mvil User Manual

Page 12 of 100

Class: CCombinedModel Class

 {

 angleEnd = end;

 }

 void setInvariance (int type)

 {

 invariance = type;

 }

 int getInvariance (void)

 {

 return invariance;

 }

 void setRotatePatternCount (int rCount)

 {

 rotatePatternCount = rCount;

 }

 int getRotatePatternCount (void)

 {

 return rotatePatternCount;

 }

 void setScalePatternCount (int sCount)

 {

 scalePatternCount = sCount;

 }

 int getScalePatternCount (void)

 {

 return scalePatternCount;

 }

}
Template
Parameters

ImageClass: Input should be of CImage class type.
 e.g.: CGrayImage8, CGrayImage16, CRGBPlanar8,
 CRGBPlanar16, etc.
ImgTyp: Input should be of integer type.
 e.g.: GRAY8, GRAY16, RGBPLANAR8, RGBPLANAR16, etc.

Alacron Mvil User Manual

Page 13 of 100

Class: CCombinedModel Class

PointType: The data type representing the point coordinates. This is
dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: getDefinedModel: This will get the types of model built within the

common container.

setDefinedModel: This will set the type of model built within the
common container.

getScaleStart: This will get the start scale factor stored in the class.

setScaleStart: This will set the start scale factor in the class.

getScaleStep: This will get the scale step factor stored in the class.

getScaleStep: This will set the scale step factor in the class.

getScaleEnd: This will get the end scale factor stored in the class.

setScaleEnd: This will set the end scale factor in the class.

getAngleStart: This will get the start angle factor stored in the class.

setAngleStart: This will set the start angle factor in the class.

getAngleStep: This will get the angle step factor stored in the class.

getAngleStep: This will set the angle step factor in the class.

getAngleEnd: This will get the end angle factor stored in the class.

setAngleEnd: This will set the end angle factor in the class.

setInvariance: This specifies what type of invariance is supported in the
current model.

getInvariance: This will get what type of invariance is supported in the
current model.

setRotatePatternCount: This sets the number of rotated patterns stored
in the hierarchy based on the angle factors.

getRotatePatternCount: This gets the number of rotated patterns stored
in the hierarchy based on the angle factors.

setScalePatternCount: This sets the number of scaled patterns stored in
the hierarchy based on the scale factors.

getScalePatternCount: This gets the number of scaled patterns stored in
the hierarchy based on the scale factors.

Class: CPoint Class

Alacron Mvil User Manual

Page 14 of 100

Class: CPoint Class

Description: This is a template-based class defining the basic point object.

Syntax: template <class pointType>

class CPoint

{

public:

 pointType x;

 pointType y;

}
Template
Parameters

pointType: Input should be of the data type of image’s pixel.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Builds the problem space for pattern matching
Syntax: err_ret FOIL::ModelBuild (

 model_type modelType,
 CImage<imageClass, imgTyp> inputImage,
 CImage<imageClass, imgTyp> pattern,
 CImage<imageClass, imgTyp>
 inputImageMask,
 CImage<imageClass, imgTyp> patternMask,
 float scaleStart,
 float scaleStep,
 float scaleEnd,
 float angleStart,
 float angleStep,
 float angleEnd,
 CCombinedModel<imageClass,imgTyp,pointType>
&resultModel,
 CPoint <unsigned long> patternCentre
);

Arguments: modelType – Parameter to indicate the kind of problem space being built.
This parameter can assume the valid values
MODELIMAGECORRELATION and MODELIMAGEDIFFERENCE,
which are enumerated FOIL types.
inputImage – Input image on which the pattern image is to be recognized.
This should be a non-null image object.
pattern – Pattern image to be searched for on the input image. This should
be a non-null image.

Alacron Mvil User Manual

Page 15 of 100

Summary: Builds the problem space for pattern matching
inputImageMask – The ROI mask to be applied on the input image. The
pixel locations where the user does not want to include in computation,
should hold ‘0’ value. All non-zero values.
patternMask – The ROI mask to be applied on the pattern image. The pixel
locations where the user does not want to include in computation, should
hold ‘0’ value. All non-zero values.
scaleStart – Starting scale for the pattern. The valid range will start from 1
till a scale value which, when applied on the pattern, will be less than the
input dimensions.
scaleStep – Step to compute next successive scale factor from scaleStart.
scaleEnd – Specifies the end scale. The valid range is a non-zero value.
Ideally it should be greater than scaleStart.
angleStart – Starting angle for the pattern. Values range from 0 to 360
degrees.
angleStep – Step to compute next successive angle from angleStart. It
should be a non-zero number
angleEnd – Specifies the end angle. Values range from 0 to 360 degrees.
But ideally should be greater than angleStart.
resultModel – Object containing the resultant model. This should be non-
null object.
patternCentre – Pattern center point provided by user. This should be a
non-null object with x coordinate between the pattern row boundary and y
coordinate between pattern col boundary.

Return: API execution status.
Description: This API constructs the problem space for image-based correlation, image-

based difference, geometric-based pattern matching, and all combinations
of the three pattern-matching problems. The input and pattern image and
their ROI masks are manipulated with the scale and rotational invariance
parameters to construct the problem space.
 When used to construct geometric-based pattern-matching problem
space, a pre-processing step is required. After instantiating the resultModel
object, add the base point patterns to the PatternList vector (Geometric
member object) before invoking ModelBuild.

Example: FOIL::CImage<FOIL::CGrayImage8, GRAY8> inputImage;
FOIL::CImage<FOIL::CGrayImage8, GRAY8> inputImageMask;
FOIL::CImage<FOIL::CGrayImage8, GRAY8> patternImage;
FOIL::CImage<FOIL::CGrayImage8, GRAY8> patternMask;
FOIL::CCombinedModel<FOIL::CGrayImage8,GRAY8,unsigned long>
 resultModel;
FOIL::CPoint<unsigned long> patternCentre;
FOIL CPatternElement<FOIL::CGrayImage8, GRAY8,int> basePattern1;
FOIL:: CPatternElement<FOIL::CGrayImage8, GRAY8,int>
basePattern2;
FOIL:: CPatternElement<FOIL::CGrayImage8, GRAY8,int>
basePattern3;

Alacron Mvil User Manual

Page 16 of 100

Summary: Builds the problem space for pattern matching
float scaleStart;
float scaleStep;
float scaleEnd;
float angleStart;
float angleStep;
float angleEnd;
int api_status = -1;

// FOR IMAGE-BASED
api_status = FOIL::ModelBuild
(FOIL::MODELIMAGECORRELATION, inputImage, patternImage,
inputImageMask, patternMask, scaleStart, scaleStep, scaleEnd, angleStart,
angleStep, angleEnd, resultModel, patternCentre);

// FOR GEOMETRIC-BASED
/* Pre-processing step */
resultModel.Geometric.PatternList.push_back(basePattern1);
resultModel.Geometric.PatternList.push_back(basePattern2);
resultModel.Geometric.PatternList.push_back(basePattern3);

Class: CPatternElement Class

Description: This is a template-based class defining the basic pattern element object to
be searched. We will have to derive various classes from this base class
to override the POP function to provide either picking a single pixel
value or applying the sobel operation.

Syntax: template < class imageClass, int imgTyp, class pointType >

class CPatternElement

{

public:

 CImage < imageClass, imgTyp > PatternElement;

 float expected;

 float weight;

 CPoint < pointType > Point;

 virtual float PoP(CImage < imageClass, imgTyp >
element, CPoint < pointType > p)

 {

 return (element.MatrixImage.GetItem(p.x, p.y));

Alacron Mvil User Manual

Page 17 of 100

 }

}

Template
Parameters

ImageClass :Input should be of CImage class type
 e.g.: CGrayImage8, CGrayImage16, CRGBPlanar8,
 CRGBPlanar16, etc.
ImgTyp : Input should be of integer type.
 e.g. : GRAY8, GRAY16, RGBPLANAR8, RGBPLANAR16 etc
PointType : The data type representing the point coordinates. This is
dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: POP: This is the overloaded api defining the point operator for the

pattern element.

Class: CPatternPointSobel Class

Description: This is a template-based class defining the basic pattern element object to
be searched. We will have to derive various classes from this base class
to override the POP function to provide either picking a single pixel
value or applying the sobel operation.

Syntax: template < class imageClass, int imgTyp, class pointType >

class FOIL_API CPatternPointSobel : public CPatternElement <
imageClass, imgTyp, pointType >

{

public :

 float PoP(CImage < imageClass, imgTyp > element, CPoint
< unsigned long > p);

}

Template
Parameters

ImageClass :-Input should be of CImage class type
 e.g.: CGrayImage8, CGrayImage16, CRGBPlanar8,
CRGBPlanar16 etc
ImgTyp: Input should be of integer type
 e.g.: GRAY8, GRAY16, RGBPLANAR8, RGBPLANAR16 etc
PointType: The data type representing the point coordinates. This is
dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc

Member
Functions: POP: This is the overloaded api defining the point operator for the

pattern element. Here we use Sobel to get the result of point operation

Alacron Mvil User Manual

Page 18 of 100

Class: CMatch Class

Description: This is a template-based class that will hold the match results of a pattern
matching operation.

Syntax: template <class pointType>

class CMatch

{

 public:

 float score;

 CPoint <pointType> point;

}
Template
Parameters

pointType: Input should be of the data type of image’s pixel
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Class: CMatchList Class

Description: This class will hold the result of the matches and the resultant image
depicting the match.

Syntax: template < class pointType >

class FOIL_API CMatchList

{

 private :

 int matchCount;

 public :

 float angle;

 float scale;

 std::vector < CMatch < pointType > > MatchList;

 CMatchList()

 {

 matchCount = 0;

 }

 void incrMatchCount (void)

 {

Alacron Mvil User Manual

Page 19 of 100

Class: CMatchList Class

 matchCount++;

 }

 int getMatchCount (void)

 {

 return matchCount;

 }

}
Template
Parameters

pointType:Input should be of the data type of image’s pixel
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: incrMatchCount: This will increment the match count mainitained in

the class.

getMatchCount: This will get the match count set in the class

Summary: Locates a pattern on a pre-built model
Syntax: err_ret FOIL::Locate (

 model_type modelType,
 float threshold,
 CCombinedModel <imageClass,imgTyp,pointType>
&inputModel,
 CMatchList <centreType>
&outputMatchList);

Arguments: modelType - Indicates input image model on which the pattern is to be
located. This can take the valid ranges of FOIL enumerated types among
MODELIMAGECORRELATION, MODELIMAGEDIFFERENCE and
MODELGEOMETRIC
threshold – Value to compare computed scores to determine a match. For
the correlation approach, the threshold has a valid range between 0.0 and
1.0. For the other 2 approaches it is governed by the input specified by the
user.
inputModel – Problem space populated by ModelBuild. This is a non-null
object populated by the ModelBuild function for Correlation or Difference
based matching. In Geometric based matching, the process of adding base
pattern points is done prior to this call.
outputMatchList – List of matched pixel coordinates and computed scores.
This should be a non-null object.

Return: API execution status.
Description: This API locates a pattern on an image-based correlation, image-based

difference, or geometric-based pattern-matching problem space.
Example: FOIL::CMatchList<unsigned long> match;

Alacron Mvil User Manual

Page 20 of 100

float threshold = 1.0;

api_status = FOIL::Locate(FOIL::MODELIMAGECORRELATION,
threshold, resultModel, match);

3 MVIL LIBRARY: CALIBRATION AND MEASUREMENT

3.1 Control/Data Flow Diagrams

Calibration

Orientation

Alacron Mvil User Manual

Page 21 of 100

Measurement

Alacron Mvil User Manual

Page 22 of 100

Alacron Mvil User Manual

Page 23 of 100

Coordinate Definition

Metric Extraction

Alacron Mvil User Manual

Page 24 of 100

This section details the API’s built for Calibration and Measurement in the MViL library. In the
description of each API, the necessary input output components are mentioned.

Subcategories of APIS included in this section are:

• Calibration

Alacron Mvil User Manual

Page 25 of 100

• Measurement Coordinate System
• Orientation
• Measurement and Fit
• Spatial Metric Tool
• Photometric Tool

3.2 Required Classes for Calibration APIs

Class: CCalibratedImage Class

Description: This template based class will expose the various correction API’s to be
applied on the input image and template image.

Syntax: template < class imageClass, int imgTyp, class dataType>

class CCalibratedImage

{

 public:

static CImage<imageClass , imgTyp> DarkFieldCorrection
(CImage<imageClass , imgTyp> inputImage,
CImage<CMatrixF,FLOAT> darkFeild, float** gainFactor);

static CColourImage<imageClass, imgTyp>
DarkFieldCorrection (CColourImage<imageClass,imgTyp>
inputImage, CImage<CMatrixF,FLOAT> rChannelDarkFeild,
CImage<CMatrixF,FLOAT> gChannelDarkFeild,
CImage<CMatrixF,FLOAT> bChannelDarkFeild, float**
rChannelGainFactor, float** gChannelGainFactor, float**
bChannelGainFactor);

static CImage<imageClass , imgTyp> PerspectiveCorrection
(CImage<imageClass , imgTyp> inputImage, CVector<long>
u_vector, CVector<long> v_vector, CVector<long> n_vector,
float L);

static CColourImage<imageClass,imgTyp>
ColourAberrationCorrection
(CColourImage<imageClass,imgTyp> inputImage, double
scaleFactorRed, double scaleFactorGreen, double
scaleFactorBlue, double scaleCentreX, double scaleCentreY);

static CImage<imageClass , imgTyp> ScaleCorrection
(CImage<imageClass, imgTyp> inputImage, float ScaleX, float
ScaleY, float ShearX, float ShearY, float TransX, float TransY);

}

Template
Parameters

ImageClass:Input should be of CImage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.

Alacron Mvil User Manual

Page 26 of 100

ImgTyp: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.
DataType: The data type representing the pixel data type of the image.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: DarkFieldCorrection: This overloaded function will perform the dark

field subtraction based on the correction factor entered by the user. In
case of colour images, the function taking correction factors is applied for
each channel. This api will return the corrected image object of type
Cimage.

ColourAberrationCorrection: Performs the colour aberration correction
based on the correction factor entered by the user. This api will return the
corrected image object of type Cimage.

ScaleCorrection: Performs the scale correction on the input image. If
scale factor is > 1, the algorithm will have to fill the additional pixel with
bilinear interpolation.

Perspective Correction: Performs the perspective correction on a grey
scale input image per the entries made by the user.

3.3 Calibration API’s

This section details the API’s built for Measurement subsystem within the MViL library.

1. CCalibratedImage::DarkFieldCorrection()
2. CCalibratedImage::ColourAberrationCorrection()
3. CCalibratedImage::ScaleCorrection()
4. CCalibratedImage::PerspectiveCorrection()

Summary: Performs dark field subtraction on the input image for gray

scale type images
Syntax: CImage<imageClass, imgTyp> CCalibratedImage::DarkFieldCorrection

(CImage<imageClass , imgTyp> inputImage,
CImage<CMatrixF,FLOAT> darkFeild, float** gainFactor);

Arguments: InputImage – Source image on which the correction is to be performed.
The input image should be a valid type. It should not be empty.
darkFeild – The dark field correction factor.It should be of CImage type
with image CMatrixF and image type FLOAT. The valid range is
determined by the user requirement.
gainFactor – The gain factor. It is a two-dimensional array with a value
between 0 and 1.

Return: Dark field subtracted gray scale image.
Description: This API performs dark field subtraction on each pixel value in the input

Alacron Mvil User Manual

Page 27 of 100

Summary: Performs dark field subtraction on the input image for gray
scale type images
image according to the following formula.

For each pixel (i,j) in the input image.
 calibratedImage[i,j] = gainFactor[i,j] * (inputImage[i,j] - darkField
[i,j])

Example: FOIL::CImage<CGrayImage8, GRAY8> outputImage;
FOIL::CImage<CGrayImage8, GRAY8> inputImage;
FOIL::CImage<CMatrixF, FLOAT> correctionFactor;
float** gain;
FOIL::CCalibratedImage< CGrayImgae8, GRAY8,float> calibrationObj;
outputImage = calibrationObj . DarkFieldCorrection(inputImage,
correctionFactor,gain);

Summary: Performs dark field subtraction on the input image for color

type images
Syntax: CColourImage<imageClass, imgTyp>

CCalibratedImage::DarkFieldCorrection
(CColourImage<imageClass,imgTyp> inputImage,
CImage<CMatrixF,FLOAT> rChannelDarkFeild,
CImage<CMatrixF,FLOAT> gChannelDarkFeild,
CImage<CMatrixF,FLOAT> bChannelDarkFeild, float**
rChannelGainFactor, float** gChannelGainFactor, float**
bChannelGainFactor);

Arguments: inputImage – Source image on which the correction is to be performed.
The input image should be a valid type. It should not be empty.
rChannelDarkFeild – The dark field correction factor to be applied on
RED channel. It should be of CImage type with image CmatrixF and
image type FLOAT. The valid range is governed by user requirements.
rChannelGainFactor – The gain factor to be applied to the RED channel. It
is a two-dimensional array with a value between 0 and 1.
gChannelDarkFeild – The dark field correction factor to be applied on
GREEN channel. It should be of CImage type with image CmatrixF and
image type FLOAT. The valid range is governed by user requirements.
gChannelGainFactor – The gain factor to be applied to the GREEN
channel. It is a two-dimensional array with a value between 0 and 1.
bChannelDarkFeild – The dark field correction factor to be applied on
BLUE channel. It should be of CImage type with image CmatrixF and
image type FLOAT. The valid range is governed by user requirements.
bChannelGainFactor – The gain factor to be applied to the BLUE channel.
It is a two dimensional array with a value between 0 and 1.

Return: Dark field subtracted color image.
Description: This overloaded API performs dark field subtraction on the respective

Alacron Mvil User Manual

Page 28 of 100

Summary: Performs dark field subtraction on the input image for color
type images
color channels of each pixel value in the input image according to the
following formula:

For each pixel (i,j) in the input image:

REDCHANNEL(calibratedImage[i,j]) = rChannelGainFactor[i,j] *
(REDCHANNEL(inputImage[i,j]) - rChannelDarkField [i,j]);

GREENCHANNEL(calibratedImage[i,j]) = gChannelGainFactor[i,j] *
(GREENCHANNEL(inputImage[i,j]) - gChannelDarkField [i,j]);

BLUECHANNEL(calibratedImage[i,j]) = bChannelGainFactor[i,j] *
(BLUECHANNEL(inputImage[i,j]) - bChannelDarkField [i,j]);

Example: FOIL::CColourImage<CRGBPlanar8, RGBPLANAR8> outputImage;
FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage;
FOIL::CImage<CMatrixF, FLOAT> RedFactor;
FOIL::CImage<CMatrixF, FLOAT> GreenFactor;
FOIL::CImage<CMatrixF, FLOAT> BlueFactor;
float** redGain;
float** greenGain;
float** blueGain;
FOIL::CCalibratedImage< CRGBPlanar8, RGBPLANAR8, float>
calibrationObj;

outputImage = calibrationObj . DarkFieldCorrection(inputImage,
RedFactor, GreenFactor, BlueFactor, redGain, greenGain, blueGain);

Summary: Performs Color aberration correction on the input image for

color type images
Syntax: CColourImage<imageClass,imgTyp>

CCalibratedImage::ColourAberrationCorrection
(CColourImage<imageClass,imgTyp> inputImage, double
scaleFactorRed, double scaleFactorGreen, double scaleFactorBlue, double
scaleCentreX, double scaleCentreY);

Arguments: inputImage – Source image on which the correction is to be performed.
The input image should be a valid colour type. It should not be empty.
rChannelCorrectionFactor – The colour aberration correction factor to be
applied on RED channel. It should be of CImage type with image
CmatrixF and image type FLOAT.
scaleFactorRed – The sale factor to be applied on RED channel. The valid
range is governed by user requirements.
scaleFactorGreen – The sale factor to be applied on GREEN channel. The
valid range is governed by user requirements.
scaleFactorBlue – The sale factor to be applied on BLUE channel. The

Alacron Mvil User Manual

Page 29 of 100

Summary: Performs Color aberration correction on the input image for
color type images
valid range is governed by user requirements.
scaleCentreX – The Xcenter of the scale. The valid range is governed by
user requirements.
scaleCentreY – The Ycenter of the scale. The valid range is governed by
user requirements.

Return: Color aberration corrected image.
Description: For each color channel, the algorithm will apply the respective scale

factors and compute the bilinear point for the corresponding output pixels.
Example: FOIL::CColourImage<CRGBPlanar8, RGBPLANAR8> outputImage;

FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage;
double RedFactor;
double GreenFactor;
double BlueFactor;
double Xcentre;
double Ycentre;
FOIL::CCalibratedImage< CRGBPlanar8, RGBPLANAR8, float>
calibrationObj;

outputImage = calibrationObj . ColourAberrationCorrection (inputImage,
RedFactor, GreenFactor, BlueFactor, Xcentre, Ycentre);

Summary: Performs Scale correction on the input image for gray scale

type images
Syntax: CImage<imageClass , imgTyp> CCalibratedImage::ScaleCorrection

(CImage<imageClass, imgTyp> inputImage, float ScaleX, float ScaleY,
float ShearX, float ShearY, float TransX, float TransY);

Arguments: inputImage – Source image on which the correction is to be performed.
The input image should be a valid type. It should not be empty.
ScaleX – The scale factor on X-axis. This variable should contain a valid
float value. The valid range is governed by user requirements.
ScaleY – The scale factor on Y-axis. This variable should contain a valid
float value. The valid range is governed by user requirements.
ShearX – The shear factor on X-axis. This variable should contain a valid
float value. The valid range is governed by user requirements.
ShearY – The shear factor on Y-axis. This variable should contain a valid
float value. The valid range is governed by user requirements.
TransX – The translation factor on X-axis. This variable should contain a
valid float value. The valid range is governed by user requirements.
TransY – The translation factor on Y-axis. This variable should contain a
valid float value. The valid range is governed by user requirements.

Return: Scale-corrected image.
Description: Input gray scale image is scale corrected. SacleX and ScaleY should be >=

Alacron Mvil User Manual

Page 30 of 100

Summary: Performs Scale correction on the input image for gray scale
type images
1.

Example: FOIL::CImage<CGrayImage8, GRAY8> outputImage;
FOIL::CImage<CGrayImage8, GRAY8> inputImage;
float XScale = 2;
float YScale = 2;
float XShear = 1;
float YShear = 1;
float XTrans = 30;
float YTrans = 50;
FOIL::CCalibratedImage< CGrayImage8, GRAY8, float> calibrationObj;

outputImage = calibrationObj . ScaleCorrection (inputImage, XScale,
YScale, XShear, YShear, XTrans, YTrans);

Class: CVector Class

Description: This template-based calss will represent a vector having values across x,
y and z directions.

Syntax: template<class vector_type>

class CVector

{

vector_type x;

 vector_type y;

 vector_type z;

}
Template
Parameters

vector_type:-Input should be of the data type of the vector
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Performs Perspective correction on the input image for gray

scale type images
Syntax: CImage<imageClass,imgTyp> CCalibratedImage ::PerspectiveCorrection

(CImage<imageClass , imgTyp> inputImage, CVector<long> u_vector,
CVector<long> v_vector, CVector<long> n_vector, float L);

Arguments: inputImage – Source image on which the correction is to be performed.
The input image should be a valid type. It should not be empty.
u_vector – Transformation vector supplied by user. The valid range is
governed by user requirements.

Alacron Mvil User Manual

Page 31 of 100

Summary: Performs Perspective correction on the input image for gray
scale type images
v_vector – Transformation vector supplied by user. The valid range is
governed by user requirements.
n_vector – Transformation vector supplied by user. The valid range is
governed by user requirements.
L – The sensor specification given by the user. The type of sensor used by
the user governs the valid range.

Return: Perspective-corrected image.
Description: This api will compute the destimation pixel coordinates based on the

transformation factors given by the user. Upon boundary checking the
sources pixels are copied into the newly computed destination pixel
location.

Example: FOIL::CImage<CGrayImage8, GRAY8> outputImage;
FOIL::CImage<CGrayImage8, GRAY8> inputImage;
CVector<unsigned int> u;
CVector<unsigned int> v;
CVector<unsigned int> n;
float L;
FOIL::CCalibratedImage< CGrayImage8, GRAY8, float> calibrationObj;

outputImage = calibrationObj . PerspectiveCorrection (inputImage, u, v, n,
L);

4 REQUIRED CLASSES FOR THE MEASUREMENT
COORDINATE SYSTEM:

Class: CCoordinateSystem Class

Description: This template-based class will represent the generated coordinate system
from the array-of-dots image.

Syntax: template <int rowHoles, class pointTyp, class imageClass, int imgTyp>

class CCoordinateSystem

{

 private:

 pel_coord Ordinates[rowHoles][rowHoles];

 public:

 err_ret SetMeasurementCoordinates

 (CImage<imageClass,imgTyp> templateImage,

Alacron Mvil User Manual

Page 32 of 100

Class: CCoordinateSystem Class

 PatternElement<pointTyp,imgClass,imgTyp>
holePattern, float

 threshold);

 int GetUnitInPixels(void);

 }.
Template
Parameters

RowHoles:Input should be a Integer value,it will indicate the row count
ImageClass:Input should be of Cimage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.

Member
Functions: SetMeasurementCoordinates: This api will get the corrected array-of-

dots image and will perform a geomtetric-pattern matching for dots and
retruns the user with the two-dimensional coordinate system defined with
respect to the array-of-dots image. This coordinate system will have an
origin starting with the top left dot in the image.

GetUnitInPixels – This api will get the generated coordinate system and
will return the number of pixels representing one physical unit.

4.1 Measurement Coordinate System API’s

1. CCoordinateSystem::SetMeasurementCoordinates()
2. CCoordinateSystem::GetUnitInPixels()

Summary: Defines the measurement coordinate system from the array of dots

image
Syntax: err_ret

CCoordinateSystem::SetMeasurementCoordinates(CImage<imageClass,i
mgTyp> templateImage, CPatternElement<pointTyp,imgClass,imgTyp>
holePattern, float threshold);

Arguments: templateImage: This is the array-of-dots image that is used for defining the
coordinate system. This should be a non-null object
holePattern: This is the point pattern representation of the filled hole that is
to be searched in the template image for defining the coordinate system.
This should be a non-null object.
Threshold: The threshold input to do the hole location in template image.
The input image should be a valid type. It should not be empty. This is
governed by the user inputs given for the point pattern representation of a

Alacron Mvil User Manual

Page 33 of 100

hole.
Return: API execution status.
Description: A coordinate system is defined from an array-of-dots image by performing

a geometric-based pattern matching of a filled hole. This coordinate
system allows translation from measurement units to real world units.

Example: FOIL::CImage<CGrayImage8, GRAY8> arrayOfDots10by10Image;
FOIL::CImage<CGrayImage8, GRAY8> pointPattern;
float threshold = 1;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate;

ordinate . SetMeasurementCoordinates(arrayOfDots10by10Image,
pointPattern, threshold);

Summary: Extracts the pixel distance of array of dots
Syntax: int CCoordinateSystem::GetUnitInPixels(void);

Arguments: None
Return: Center-to-center pixel distance between two adjacent holes in the array-of-

dots image.
Description: The distance of two adjacent dots in the array of dots image is found within

a pre-defined coordinate system.
Example: FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate;

int dotLength;

dotLength = ordinate . GetUnitInPixels(void);

4.2 Required Classes for the Orientation APIs

Class: COrient Class

Description: This template-based class will expose the APIs that will enable the user
to get the orientation of the object in the input image

Syntax: template < class posTyp, class sizeTyp, class imageClass, class imgTyp,

 class pointTyp>

class COrient

 {

public:

 static CRectangle< posTyp , sizeTyp> GetBoundingBox
(CImage<imageClass,imgTyp> inputImage);

Alacron Mvil User Manual

Page 34 of 100

Class: COrient Class

static err_ret FindHole(CImage<imageClass,imgTyp>
inputImage, CPatternElement<pointTyp,imgClass,imgTyp> holePattern,
float threshold, CRectangle<posTyp,sizeTyp> BoundingBox, HolesList
& holesInObject);

static err_ret FindLine(Cmage<imageClass,imgTyp> inputImage,
long lineLength, CRectangle<posTyp,sizeTyp> boundingBox,
CLineSegment<long> & lineSegment);

static err_ret FindCorner(CImage<imageClass,imgTyp>
inputImage, CRectangle<posTyp,sizeTyp> boundingBox,
CCornerPair<pointTyp> & cornersInObject);

 }
Template
Parameters

posTyp:-Input should be of point type can be int,float,long, etc.
sizeTyp:Input for the row and column value can be of int,long, etc.
ImageClass:Input should be of Cimage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.
PointTyp: Input should be of type int,floatlong, etc. ,this is the input for
the point type.

Member
Functions: GetBoundingBox: This api will enable the user to identify the smallesl

bounding box of the object in the image.

FindHole: This api will enable the user to locate holes if present in the
object.

FindLine: This api will enables the user to find a line of specified length
in an object in the input image.

FindCorner: This api will enable the user to locate the corners available
in the object boundaries.

4.3 Orientation API’s

1. COrient::GetBoundingBox()
2. COrient::FindHole()
3. COrient::FindLine()

Alacron Mvil User Manual

Page 35 of 100

4. COrient::FindCorner()

Class: CRectangle Class

Description: This template-based class will represent a rectangle in terms of its
bottom-left point and width and height.

Syntax: template<class posTyp, class sizeTyp >

CRectangle

{

 public:

 CPoint <posTyp> pos;

 CSize <sizeTyp> size;

}
Template
Parameters

pos_type: Input should be of the data type of the coordinate locations. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.
size_type: Input should be of the data type of the size of the rectangle. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Gets the smallest bounding box of the object in an image
Syntax: CRectangle< posTyp , sizeTyp> COrient::GetBoundingBox

(CImage<imageClass,imgTyp> inputImage);

Arguments: inputImage: The image which contains the object whose smallest
bounding box is to be found. The input image should be a valid type. It
should not be empty.

Return: Bounding box coordinates if successful.
Description: A single pixel edge detection algorithm is used to identify the image object

boundary, from which the rectangular coordinates that enclose the object
are defined.

Example: FOIL::CImage<CGrayImage8, GRAY8> objectImage;
FOIL::CRectangle<int,int> minBoundingBox;
FOIL::COrient<int,int, CGrayImage8, GRAY8,int> orientObj;

minBoundingBox = orientObj . GetBoundingBox (objectImage);

Summary: Finds a hole within the object in an image

Alacron Mvil User Manual

Page 36 of 100

Summary: Finds a hole within the object in an image
Syntax: err_ret COrient::FindHole(CImage<imageClass,imgTyp> inputImage ,

CPatternElement<pointTyp,imgClass,imgTyp> holePattern, float threshold,
CRectangle<posTyp,sizeTyp> BoundingBox, HolesList & holesInObject);

Arguments: inputImage: The image which contains the object on which the hole is to be
located. The input image should be a valid type. It should not be empty.
holePattern: This is the point pattern representation of the hole that is to be
searched in the input image.
Threshold: Threshold input for locating holes in the input image. It should
be a valid float value. This will be determined by the user input for the point
pattern representation of the hole.
BoundingBox: The bounding box coordinates where the pattern matching is
to be confined. The row and cols size should not be zero for a CRectangle.
holesInObject: Collection of located holes in the object. This is an output
parameter which should be non-null.

Return: API execution status.
Description: A geometric-based pattern location for the hole within the object in the input

image is attempted, and the match list is computed.
Example: FOIL::CImage<CGrayImage8, GRAY8> objectImage;

FOIL:: CPatternElement<int, CGrayImage8, GRAY8> holePointPattern;
FOIL::CRectangle<int,int> minBoundingBox;
float threshold = 1;
FOIL::HolesList holes;
FOIL::COrient<int,int, CGrayImage8, GRAY8,int> orientObj;
FOIL::err_ret return;

return = orientObj . FindHole (objectImage, holePointPattern,
minBoundingBox, threshold, holes);

Class: CLineSegment Class

Description: This template-based class will represent a line segment as a pair of start and
end points.

Syntax: template<class pointTyp>

CLineSegment

{

public:

 CPoint< pointTyp > startPoint;

 CPoint< pointTyp > endPoint;

}
Template pointTyp: Input should be of the data type of the coordinate locations. It is

Alacron Mvil User Manual

Page 37 of 100

Class: CLineSegment Class

Parameters dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Finds a line within the object in an image
Syntax: err_ret COrient::FindLine(CImage<imageClass,imgTyp> inputImage, long

lineLength, CRectangle<posTyp,sizeTyp> boundingBox,
CLineSegment<long> & lineSegment);

Arguments: inputImage: The image which contains the object on which the line of a
specified length is to be located. Image should be a valid image. It should
not be empty.
lineLength: This length of the line to be located in pixel units. It should be a
valid positive float value greater than 0.
boundingBox: The bounding box coordinates where the line finding is to be
confined. Content of this variable, i.e., boundingBox. pos and boundingBox
.size should be valid values. boundingBox .size .rows and boundingBox
.size.cols should not be 0.
lineSegment: The located line segment if finding is successful. This is an
output parameter. This should be a non-null object.

Return: API execution status.
Description: A straight line of a specific length is searched for within the object in the

specified bounding box region.
Example: FOIL::CImage<CGrayImage8, GRAY8> objectImage;

FOIL::CRectangle<int,int> minBoundingBox;
FOIL::CLineSegment<long> line;
long length = 25;
FOIL::COrient<int,int, CGrayImage8, GRAY8,int> orientObj;
FOIL::err_ret return;

return = orientObj . FindLine (objectImage, length, minBoundingBox, line);

Class: CCornerPair Class

Description: This is a template-based class that will represent a pair of lines that
contains a common endpoint that specifies a corner.

Syntax: template <class pointTyp>

CCornerPair

{

Alacron Mvil User Manual

Page 38 of 100

Class: CCornerPair Class

public:

 CLineSegment<pointTyp> line1;

 CLineSegment<pointTyp> line2;

}
Template
Parameters

pointTyp: Input should be of the data type of the coordinate locations. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Finds a corner pair within the object in an image
Syntax: err_ret COrient::FindCorner(CImage<imageClass,imgTyp> inputImage,

CRectangle<posTyp,sizeTyp> boundingBox, CCornerPairs &
cornersInObject);

Arguments: inputImage: The image which contains the object on which the corners of
an object are to be located. Image should be a valid image. It should not be
empty.
boundingBox: The bounding box coordinates where the corner finding is
to be confined. Content of this variable, i.e., boundingBox. pos and
boundingBox .size should be valid values. boundingBox .size.rows and
boundingBox .size.cols should not be 0.
cornersInObject: The located corner pair if finding is successful. This is an
output parameter. This should be a non-null object.

Return: API execution status.
Description: A pair of corners is searched for within the object in the specified

bounding box region.
Example: FOIL::CImage<CGrayImage8, GRAY8> objectImage;

FOIL::CRectangle<int,int> minBoundingBox;
FOIL::CCornerPair<unsigned long> corners;
FOIL::COrient<int,int, CGrayImage8, GRAY8,int> orientObj;
FOIL::err_ret return;

return = orientObj . FindCorner (objectImage, minBoundingBox, corners);

4.4 Required Classes for the Measurement and Fit APIs

Class: CMeasure Class

Description: This is a template-based class that will expose the APIs to the user to

Alacron Mvil User Manual

Page 39 of 100

Class: CMeasure Class

make measurement by extracting pointsets and fitting the shapes into the
points.

Syntax: template < class imageClass, int imgTyp, class pointTyp, class
dataType>

CMeasure

{

public:

 static CPointSet<pointTyp> Measure
(CMeasurementTool<pointTyp> measurementTool,
CImage<imageClass, imgTyp> image);

 static err_ret Fit (CPointSet<pointTyp> pointSet,
CLineSegment<pointTyp>& lineSegment);

 static err_ret Fit (CPointSet<pointTyp> pointSet,
CCircle<pointTyp>& circle);

static CPoint<pointTyp>
CMeasure::DetectEdge(CLineSegment<pointTyp> lineSegment,
CImage<imageClass, imgTyp> image);

}
Template
Parameters

ImageClass: Input should be of Cimage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.
PointTyp: Input should be of type int, floatlong, etc. This is the input for
the point type.
DataType: The data type representing the pixel data type of the image.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: Measure: This api will extract the point sets from the user-defined

measurement tool. The measurement tool will be defined in terms of
image coordinates. This api will perform a single pixel edge detection
along the defined line segments and returns the point sets.

Fit: This api will expose the functionality to fit a specified geometric
object in the set of collected points. There are different overloaded APIs
for fitting different shapes.

DetectEdge: This private member function of CMeasure will extract the
edge detected on the given image.

Alacron Mvil User Manual

Page 40 of 100

4.5 Measurement and Fit API’s

1. CMeasure::Measure()
2. CMeasure::Fit()
3. Cmeasure::DetectEdge()

Class: CPointSet Class

Description: This template-based class will represent the point set which is basically a
collection of points.

Syntax: template <class pointTyp>

class CPointSet

{

private:

 int pointCount;

 std::vector< CPoint <pointTyp>> PointList;

public:

void AddPointToSet (CPoint<pointTyp> point);

{

 PointList.push_back(point);

 pointCount++;

}

int GetNumPoints(void)

{

 return (pointCount);

}

 CPoint<pointType> GetPoint(int Index)

{

 if (Index >= segmentCount) && (Index
<=segmentCount)

 return (PointList[Index]);

}

}
Template pointTyp: Input should be the data type of the coordinate locations. It is

Alacron Mvil User Manual

Page 41 of 100

Class: CPointSet Class

Parameters dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: AddPointToSet: adding new points to the existing set.

GetNumPoints: extracts the point count stored in the class.

GetPoint: extracts the stored point from a specified index in the list.

Summary: Extracts the measurement points
Syntax: CPointSet<pointTyp> CMeasure::Measure

(CMeasurementTool<pointTyp> measurementTool, CImage<imageClass,
imgTyp> image);

Arguments: measurementTool: The measurement tool specified by user that is to be
used for extracting point sets from the image. This should be a non-null
object.
image: The input image upon which the measurement tools are placed.
Image should be a valid image. It should not be empty.

Return: Point set contains collection of points detected by measurement tool.
Description: Single pixel edge detection is attempted on each of the line segments

defined in the toolset. The resultant point set can be used to fit the
respective geometric object and extract its measurements.

Example: FOIL::CMeasurementTool<long> toolset;
FOIL::CPointSet<long> points;
FOIL::CImage<CGrayImage8, GRAY8> objectImage;
FOIL::CMeasure< CGrayImage8, GRAY8,long,long> measuringObj;

points = measuringObj . Measure (toolset, objectImage);

Summary: Fits a line on the point set
Syntax: err_ret CMeasure::Fit (CPointSet<pointTyp> pointSet,

CLineSegment<pointTyp>& lineSegment);

Arguments: pointSet: The point set extracted by the measure process using the user-
defined measurement tool.Content of this point set should not be negative.
lineSegment: The best fit line in the given point set. This is an output
parameter. This should be a non-null object.

Return: Best-fit line segment from the given set of points.
Description: A line fitting algorithm is attempted on the collection of points provided.

The line segment that fits the maximum number of points from the point
set is returned.

Example: FOIL::CPointSet<long> points;
FOIL::CLineSegment<long> FittedLine;

Alacron Mvil User Manual

Page 42 of 100

Summary: Fits a line on the point set
FOIL::CMeasure< CGrayImage8, GRAY8,long,long> measuringObj;
FOIL::err_ret return;

return = measuringObj . Fit (points, FittedLine);

Summary: Fits a circle on the point set
Syntax: err_ret CMeasure::Fit(CPointSet<pointTyp> pointSet,

CCircle<pointTyp>& circle);

Arguments: pointSet: The point set extracted by the measure process using the user-
defined measurement tool. Content of this point set should not be negative.
Circle: The best fit circle in the given point set. This is an output
parameter. This object should be non-null.

Return: Best-fit circle from the given set of points.
Description: A circle fitting algorithm is attempted on the collection of points. The

circle that fits the maximum number of points from the point set is
returned.

Example: FOIL::CPointSet<long> points;
FOIL::CCircle<long> FittedCircle;
FOIL::CMeasure< CGrayImage8, GRAY8,long,long> measuringObj;
FOIL::err_ret return;

return = measuringObj . Fit (points, FittedCircle);

Summary: Detects the Edge in the input image
Syntax: static CPoint<pointTyp>

CMeasure::DetectEdge(CLineSegment<pointTyp> lineSegment,
CImage<imageClass, imgTyp> image);

Arguments: lineSegment: The line segment along which the single pixel edge detection
is to be done. Content of this lineSegment should not be negative and the
value for startpoint should not be equal to endpoint.
Image: The image upon which the edges are to be located. Image should
be a valid image. It should not be empty.

Return: This api will return the pixel coordinates along the line segment where the
edge was detected in the image.

Description: Detects the edge touching the line segment, which is passed as the
parameter from the input image.

Example: FOIL::CPointSet<long> point;
FOIL::CLineSegment<long> lineSegment
FOIL::CImage< CGrayImage8, GRAY8> image;
FOIL::CMeasure< CGrayImage8, GRAY8,long,long> measuringObj;
point = measuringObj .DetectEdge(lineSegment, image);

Alacron Mvil User Manual

Page 43 of 100

4.6 Required Classes for the Spatial Metric Tool APIs

Class: CSpatialMetricTools Class

Description: This is a template-based class that will extract the spatial metrics from
the measured image coordinates.

Syntax: template<class pointTyp, int rowHoles, class imageClass, int imgTyp >

CSpatialMetricTools

{

public:

 static float XLenght (CLineSegment<pointTyp>
lineSegment, CCoordinateSsystem< rowHoles, pointTyp,
imageClass , imgTyp > ordSystem);

 static float YLength(CLineSegment<pointTyp>
lineSegment, CCoordinateSsystem< rowHoles, pointTyp,
imageClass , imgTyp > ordSystem);

 static float Length(CLineSegment<pointTyp>
lineSegment, CCoordinateSsystem< rowHoles, pointTyp,
imageClass , imgTyp > ordSystem);

 static float XAngle(CLineSegment<pointTyp>
lineSegment);

 static float YAngle(CLineSegment<pointTyp>
lineSegment);

 static float Angle(CLineSegment<pointTyp>
lineSegment1, CLineSegment<pointTyp> lineSegment2);

 static float Angle(CArc<pointTyp> arc);

 static float Diameter(CCircle<pointTyp> circle,
CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp
> ordSystem);

 static float Radius(CCircle<pointTyp> circle,
CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp
> ordSystem);

 static float Area(CRegion<pointTyp> region,
CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp
> ordSystem);

}
Template
Parameters

PointTyp: Input should be of type int, floatlong, etc. This is the input for
the point type.

Alacron Mvil User Manual

Page 44 of 100

Class: CSpatialMetricTools Class

rowHoles: Input to this template variable should be a integer value, i.e.,
count of rows.
ImageClass:Input should be of Cimage class type
 e.g.:-CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: GRAY8m, GRAY16, etc.

Member
Functions: XLength: This api will get the x-coordinate length between the line

segment endpoints in real world measurement units.

YLength: This api will get the y-coordinate length between the line
segments endpoints in real world measurement units.

Length: This api will return the absolute length of the line segment in
terms of real world measurement units.

XAngle: This api will give the angle in degrees made by the line
segment. w.r.t the X axis.

YAngle: – This api will give the angle in degrees made by the
linesegment, w.r.t the Y-axis.

Angle: This api will return the angle in degrees made by the
linesegment2 sweeping in clock wise direction from linesegment1.

Diameter: This api will return the diameter of the given circle in real
world units.

Radius: This api will return the radius of the given circle in real world
units.

Area: This api will return the computed area of the given region in real
world units.

4.7 Spatial Metric Tool API’s

1. CSpatialMetricTools::XLength()
2. CSpatialMetricTools::YLength()
3. CSpatialMetricTools::Length()
4. CSpatialMetricTools::XAngle()
5. CSpatialMetricTools::YAngle()
6. CSpatialMetricTools::Angle()
7. CSpatialMetricTools::Diameter()
8. CSpatialMetricTools::Radius()
9. CSpatialMetricTools::Area()

Summary: Finds the length of a line segment along X-axis

Alacron Mvil User Manual

Page 45 of 100

Summary: Finds the length of a line segment along X-axis
Syntax: float CSpatialMetricTools::XLength (CLineSegment<pointTyp>

lineSegment, CCoordinateSsystem< rowHoles, pointTyp, imageClass ,
imgTyp > ordSystem);

Arguments: lineSegment: The line segment whose length w.r.t X-axis is to be
determined. Content of this linesegment should not be negative and value
for startpoint should not be equal to endpoint.
ordSystem – The coordinate system defined by the user across which he
want to make the measurement. This should be a non-null object.

Return: Length of the line segment along X-axis in physical units.
Description: The distance between the end points of the line segment along X-axis is

computed. This is converted to the real world measurement units using the
specified coordinate system.

Example: FOIL::CLineSegment<int> line;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float length;

length = SpatialTool . Xlength (line, ordinate10by10);

Summary: Finds the length of a line segment along Y-axis
Syntax: float CSpatialMetricTools:: YLength(CLineSegment<pointTyp>

lineSegment, CCoordinateSsystem< rowHoles, pointTyp, imageClass ,
imgTyp > ordSystem);

Arguments: lineSegment: The line segment whose length w.r.t Y-axis is to be obtained.
Content of this lineSegment should not be negative. And value for
startpoint should not be equal to endpoint.
ordSystem: The coordinate system defined by the user across which he
wants to make the measurement. This should be a non-null object.

Return: Length of the line segment along Y-axis in physical units.
Description: The distance between the end points of the line segment along Y-axis is

computed. This is converted to the real world measurement units using the
specified coordinate system.

Example: FOIL::CLineSegment<int> line;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float length;

length = SpatialTool . Ylength (line, ordinate10by10);

Alacron Mvil User Manual

Page 46 of 100

Summary: Finds the absolute length of a line segment
Syntax: float CSpatialMetricTools:: Length(CLineSegment<pointTyp>

lineSegment, CCoordinateSsystem< rowHoles, pointTyp, imageClass ,
imgTyp > ordSystem);

Arguments: lineSegment: The line segment whose absolute length. Content of this
lineSegment should not be negative And value for startpoint should not be
equal to endpoint.
ordSystem: The coordinate system defined by the user across which he
wants to make the measurement. This should be a non-null object.

Return: Absolute length of the line segment.
Description: The absolute distance between the end points of the line segment is

computed. This is converted to the real world measurement units using the
specified coordinate system.

Example: FOIL::CLineSegment<int> line;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float length;

length = SpatialTool . Length (line, ordinate10by10);

Summary: Finds the angle made by a line segment with X-axis.
Syntax: float CSpatialMetricTools::XAngle(CLineSegment<pointTyp>

lineSegment);

Arguments: lineSegment: The line segment whose slope is to be measured across the
X-axis. Content of this lineSegment should not be negative. And value for
startpoint should not be equal to endpoint.

Return: Line-segment’s X-axis slope in degrees.
Description: The slope of the line segment to the X-axis is computed using the two

point line representation.
Example: FOIL::CLineSegment<int> line;

FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float angle;

angle = SpatialTool . XAngle (line);

Summary: Finds the angle made by a line segment with Y-axis.
Syntax: float CSpatialMetricTools::YAngle(CLineSegment<pointTyp>

lineSegment);

Arguments: lineSegment: The line segment whose slope is to be measured across the
Y-axis. Content of this lineSegment should not be negative and value for

Alacron Mvil User Manual

Page 47 of 100

startpoint should not be equal to endpoint.
Return: Line-segment’s Y-axis slope in degrees.
Description: The slope of the line segment to the Y-axis is computed using the two

point line representation.
Example: FOIL::CLineSegment<int> line;

FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float angle;

angle = SpatialTool . YAngle (line);

Summary: Finds the angle between a pair of line segments.
Syntax: float CSpatialMetricTools::Angle(CLineSegment<pointTyp>

lineSegment1, CLineSegment<pointTyp> lineSegment2);

Arguments: lineSegment1: The first line segment among the pair whose angle is to be
computed. Content of this lineSegment should not be negative and value
for startpoint should not be equal to endpoint.
lineSegment2: The second line segment among the pair whose angle is to
be computed. Content of this lineSegment should not be negative and
value for startpoint should not be equal to endpoint.

Return: Angle in degrees between the two line segments.
Description: Angle between the two line segments is computed through a sweep in the

clockwise direction.
Example: FOIL::CLineSegment<int> line1;

FOIL::CLineSegment<int> line2;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float angle;

angle = SpatialTool . XAngle (line1, line2);

Class: CArc Class

Description: This is a template-based class that will represent an arc in terms of its
center and radius and arc end points

Syntax: template <class pointTyp>

CArc:: public CCircle<pointTyp>

{

public:

 CPoint<pointTyp> arcStart;

 CPoint<pointTyp> arcEnd;

}

Alacron Mvil User Manual

Page 48 of 100

Class: CArc Class

Template
Parameters

pointTyp: Input data type should match that of the coordinate locations. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary
:

Finds the inclusive angle made by an arc.

Syntax: float CSpatialMetricTools::Angle(CArc<pointTyp> arc);

Arguments
:

Arc: The arc whose inclusive angle is to be found. It should contain non-
negative coordinates within the image boundaries.

Return: Angle in degrees made by the arc.
Description
:

An arc is represented as a pair of lines with a common end point. This API
finds the angle between these two lines through a sweep in the clockwise
direction.

Example: FOIL::CArc<int> arc;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float angle;

angle = SpatialTool . Angle (arc);

Class: CCircle Class

Description: This is a template-based class that will represent a circle in terms of its
center and radius

Syntax: template <class pointTyp>

CCircle

{

public:

 long radius;

 CPoint<pointTyp> center;

}
Template
Parameters

pointTyp: Input data type should match that of the coordinate locations. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Alacron Mvil User Manual

Page 49 of 100

Summary: Gets the diameter of a circle.
Syntax: float CSpatialMetricTools::Diameter(CCircle<pointTyp> circle,

CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp >
ordSystem);

Arguments: Circle: The circle whose diameter is to be found. Circle should have points
defined within the image boundaries and the radius within the image
boundaries.
ordSystem: The coordinate system defined by the user across which he
wants to make the measurement. This should be a non-null object.

Return: Diameter of the circle in real world units.
Description: A circle is defined by its center and radius. This API converts the radius to

its diameter, and returns the value in real world units using the specified
coordinate system.

Example: FOIL::CCircle<int> circle;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float diameter;

diameter = SpatialTool . Diameter (circle, ordinate10by10);

Summary: Gets the radius of the circle.
Syntax: float CSpatialMetricTools::Radius(CCircle<pointTyp> circle,

CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp >
ordSystem);

Arguments: Circle should be have points defined within the image boundaries and the
radius within the image boundaries.
ordSystem: The coordinate system defined by the user across which he
wants to make the measurement. This should be a non-null object

Return: Radius of the circle in real world units.
Description: A circle is specified by its center and radius. This API converts the radius

to its real world value using the specified coordinate system.
Example: FOIL::CCircle<int> circle;

FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float radius;

radius = SpatialTool . Radius (circle, ordinate10by10);

Alacron Mvil User Manual

Page 50 of 100

Class: CRegion Class

Description: This is a template-based class that will represent a region in terms of
successive points.

Syntax: template <class pointTyp>

CRegion::CPointSet<pointTyp>

{

private:

 int pointCount;

 std::vector< CPoint <pointTyp>> PointList;

public:

void AddPointToSet (CPoint<pointTyp> point);

{

 PointList.push_back(point);

 pointCount++;

}

int GetNumPoints(void)

{

 return (pointCount);

}

 CPoint<pointType> GetPoint(int Index)

{

 if (Index >= segmentCount) && (Index
<=segmentCount)

 return (PointList[Index]);

}

}
Template
Parameters

pointTyp: Input data type should match that of the coordinate locations. It
is dependent on the image dimensions.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: AddPointToSet: adding new points to the existing set.

GetNumPoints: extracts the point count stored in the class.

GetPoint: extracts the stored point from a specified index in the list.

Alacron Mvil User Manual

Page 51 of 100

Summary: Gets the area of a region.
Syntax: float CSpatialMetricTools::Area(CRegion<pointTyp> region,

CCoordinateSsystem< rowHoles, pointTyp, imageClass , imgTyp >
ordSystem);

Arguments: region: The region whose area is to be found. The point coordinates should
be within the image boundaries.
ordSystem: The coordinate system defined by the user across which he
wants to make the measurement. This should be a non-null object.

Return: Area of the region in real world units.
Description: A region is assumed to be a set of points that form a polygon. This API

computes the area of the resulting polygon and returns the value in real
world units.

Example: FOIL::CRegion<int> searchArea;
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8>
ordinate10by10;
FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool;
float area;

area = SpatialTool . Area (searchArea, ordinate10by10);

4.8 Required Classes for the Photometric Tool APIs

Class: CPhotoMetricTools Class

Description: This is a template-based class that will extract the photo metrics from the
input image.

Syntax: template<class colourTyp, class pointTyp, class imageClass, int
imgTyp>

CPhotoMetricTools

{

 static CColour<colourTyp>
GetAverageColour(CRegion<pointTyp> region,
CColourImage<imageClass, imgTyp> image);

 static float GetAverageGray(CRegion<pointTyp> region,
CImage<imageClass, imgTyp> image);

}
Template ColourTyp:-Input can be of unsigned float, unsigned int, unsigned long,

Alacron Mvil User Manual

Page 52 of 100

Parameters unsigned char, etc.
PointTyp: Input should be of type int,floatlong, etc. ,this is the input for
the point type.
ImageClass:Input should be of Cimage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.

Member
Functions: GetAverageColour: – This api will extract the average value of each

colour channel in the specified region

GetAverageGray: – This api will extract the average value of gray scale
values in the specified region

4.9 Photometric Tool API’s

1. CPhotoMetricTools::GetAverageColour()
2. CPhotoMetricTools::GetAverageGray()

Class: CColour Class

Description: This is a template-based class that will represent color in terms of its Red,
Green and Blue intensities.

Syntax: template <class colourTyp>

CColour

{

public:

 colourTyp Red;

 colourTyp Green;

 colourTyp Blue;

}
Template
Parameters

colourTyp: Input should be of the data type of pixel width.
 e.g.: unsigned char, unsigned long, unsigned int, etc.

Member
Functions: None

Summary: Gets the average color of a region in the image.
Syntax: CColour<colourTyp>

CPhotoMetricTools::GetAverageColour(CRegion<pointTyp> region,

Alacron Mvil User Manual

Page 53 of 100

CColourImage<imageClass, imgTyp> image);

Arguments: region: The region of the image whose average color value is to be
computed. The size of the region should not be zero and it should contain
coordinates within the image boundaries.
image: This is the input colour image upon the region is specified. The
input image should be a valid image and should not be empty.

Return: Color object.
Description: A region is assumed to be a set of points that form a polygon. This API

computes the average intensity of each color channel and returns a color
object with the average intensities.

Example: FOIL::CRegion<int> searchArea;
FOIL::CColour<int> AverageColour;
FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage;
FOIL::CPhotoMetricTools<int, int, CRGBPlanar8, RGBPLANAR8>
PhotometricTool;

AverageColour = PhotometricTool . GetAverageColour (searchArea,
inputImage);

Summary: Gets the average gray scale value of a region in the image.
Syntax: float CPhotoMetricTools::GetAverageGray (CRegion<pointTyp> region,

CImage<imageClass, imgTyp> image);

Arguments: region: The region of the image whose average gray value is to be
computed. The size of the region should not be zero and it should contain
coordinates defined within the image boundaries.
image: This is the input gray image upon which the region is specified.
The input image should be a valid image and should not be empty.

Return: Average gray scale value of pixels in the image specified within the
region.

Description: A region is assumed to be a set of points that form a polygon. This API
computes the average of gray scale values for all pixels within the region
of the image.

Example: FOIL::CRegion<int> searchArea;
FOIL::CImage< CGrayImage8, GRAY8> inputImage;
FOIL::CPhotoMetricTools<int, int, CGrayImage8, GRAY8>
PhotometricTool;
float averageGray;

averageGray = PhotometricTool . GetAverageGray (searchArea,
inputImage);

Alacron Mvil User Manual

Page 54 of 100

5 MVIL LIBRARY: MORPHOLOGY

5.1 Control/DataFlows Diagrams

Binarising

Structuring

Alacron Mvil User Manual

Page 55 of 100

Labeling

BLOB Analysis

Alacron Mvil User Manual

Page 56 of 100

This section details the API’s built for Morphology within the MViL library.

5.2 Required Classes for the Thresholding APIs

Class: CBinarize Class

Alacron Mvil User Manual

Page 57 of 100

Class: CBinarize Class

Description: This template class will expose various thresholding APIs used to
binarize a gray sale image.

Syntax: template <class inImageClass, int inImgTyp, class threshImageClass, int
threshImgTyp, class outImageClass, int outImgTyp>

class CBinarize

{

public:

static err_ret FixedThreshold (CImage<inImageClass ,
inImgTyp> inputImage, int lowThreshold, int highThreshold,
range_type rangeSelection, int foregroundPixel , int
backgroungPixel, CImage<outImageClass , outImgTyp> *
outputImage);

static err_ret DynamicThreshold (CImage<inImageClass ,
inImgTyp> inputImage, CImage<threshImageClass,
threshImgTyp> lowThreshold, CImage< threshImageClass,
threshImgTyp > highThreshold, range_type rangeSelection, int
foregroundPixel, int backgroundPixel, CImage<outImageClass ,
outImgTyp> * outputImage);

}
Template
Parameters

inImageClass: the class type of the input image
 Ex: CGrayScale8, CGrayScale16, …
 inImgTyp: the image type of the input image
 Ex: GRAY8, GRAY16, …
threshImageClass: the class type of the threshold image
 Ex: CGrayScale8, CGrayScale16, …
threshImgTyp: the image type of the threshold image
 Ex: GRAY8, GRAY16, …
OutImageClass: the class type of the output image
 Ex: CGrayScale8, CGrayScale16, …
OutImgTyp: the image type of the output image
 Ex: GRAY8, GRAY16, …

Member
Functions: FixedThreshold: This template function will binarize the input image

based on a pair of constant thresholds across all pixels.

DynamicThreshold:-This template function will binarize the input
image based on a pair of thresholds defined for each individual pixel.

Alacron Mvil User Manual

Page 58 of 100

5.3 Thresholding API’s

1. CBinarize::FixedThreshold()
2. CBinarize::DynamicThreshold()

Summary: Applies fixed thresholding on the gray scale input image to

binarize it.
Syntax: err_ret CBinarize::FixedThreshold (CImage<inImageClass , inImgTyp>

inputImage, int lowThreshold, int highThreshold, range_type
rangeSelection, int foregroundPixel , int backgroungPixel,
CImage<outImageClass , outImgTyp> * outputImage);

Arguments: inputImage: This is the gray scale image that is to be binarized. The input
image should be a valid gray scale image and should not be empty.
lowThreshold: This is the lower bound of the threshold. Should be a
positive number.
highThreshold: This is the upper bound of the threshold. Should be a
positive number.
rangeSelection: This specifies whether to put 1 in output pixel if the input
pixel value falls within the specified threshold range or outside it. It should
take values from FOIL enumerated types
RANGE_WITHIN_THRESHOLD and
RANGE_OUTSIDE_THRESHOLD.
foregroundPixel: This is the pixel value considered if the input image pixel
value is within the threshold bounds when the rangeSelection is
WITHIN_BOUNDS else backgroundPixel. This valid range is from 0 to
max of pixel type.
backgroundPixel: This is the pixel value considered if the input image
pixel value is outside the threshold bounds when the rangeSelection is
OUTSIDE_BOUNDS else foregroundPixel. This valid range is from 0 to
max of pixel type.
outputImage: This is the resultant image of binarization. This should be a
non negative image

Return: API execution status.
Description: if(rangeSelection = = RANGE_WITHIN_THRESHOLD)

{
 within = foregroundPixel;
 without = backgroundPixel;
}
 else
{
 within = backgroundPixel;
 without = foregroundPixel;
}
For each pixel value.
if ((inputImage[i][j] >= lowThreshold) && (inputImage[i][j] <=

Alacron Mvil User Manual

Page 59 of 100

Summary: Applies fixed thresholding on the gray scale input image to
binarize it.
highThreshold))
 outputImage[i][j] = within;
 else
 outputImage[i][j] = without;

Example:

FOIL::CImage<CGrayImage8, GRAY8> inputGrayImage;
FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;
 int lowThreshold = 40;
 int highThreshold = 70;
int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CBinarize< CGrayImage16, GRAY16, CGrayImage8, GRAY8,
CGrayImage8, GRAY8> Thresholding;
FOIL::err_ret status=-1;

status = Thresholding . FixedThreshold(inputGrayImage, lowThreshold ,
highThreshold, FOIL:: RANGE_OUTSIDE_THRESHOLD,
foregroundPixel, backgroundPixel, BinarizedImage);

Summary: Applies dynamic thresholding on the gray scale input image to

binarize it.
Syntax: err_ret CBinarize::DynamicThreshold (CImage<inImageClass ,

inImgTyp> inputImage, CImage< threshImageClass, threshImageTyp >
lowThreshold, CImage< threshImageClass, threshImageTyp>
highThreshold, range_type rangeSelection, int foregroundPixel, int
backgroundPixel, CImage<outImageClass , outImgTyp> * outputImage);

Arguments: inputImage: This is the gray scale image that is to be binarized. The input
image should be a valid grayscale image and should not be empty.
lowThreshold: This is the array of lower bound of the threshold for each
pixel in the input image. Should be a positive number.
highThreshold: This is the array of upper bound of the threshold for each
pixel in the input image. Should be a positive number.
rangeSelection: This specifies whether to set output pixel value to 1 if the
input pixel value falls within the specified threshold range or outside it. It
should take values from FOIL enumerated types
RANGE_WITHIN_THRESHOLD and
RANGE_OUTSIDE_THRESHOLD.
foregroundPixel: This is the pixel value to be retained if the input image
pixel value is within the threshold bounds when the rangeSelection is
WITHIN_BOUNDS else backgroundPixel. This valid range is from 0 to
max of pixel type
backgroundPixel: This is the pixel value to be retained if the input image

Alacron Mvil User Manual

Page 60 of 100

Summary: Applies dynamic thresholding on the gray scale input image to
binarize it.
pixel value is outside the threshold bounds when the rangeSelection is
OUTSIDE_BOUNDS else foregroundPixel. This valid range is from 0 to
max of pixel type
outputImage: This is the resultant image of binarization. This should not
be empty.

Return: API execution status.
Description: if(rangeSelection = = RANGE_WITHIN_THRESHOLD)

{
 within = foregroundPixel;
 without = backgroundPixel;
}
 else
{
 within = backgroundPixel;
 without = foregroundPixel;
}
For each pixel value.

if ((inputImage[i][j] >= lowThreshold[i][j]) && (inputImage[i][j] <=
highThreshold[i][j]))
 outputImage[i][j] = within;
 else
 outputImage[i][j] = without;

Example: FOIL::CImage<CGrayImage16, GRAY16> inputGrayImage;
FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;
FOIL::CImage< CGrayImage16, GRAY16> lowThreshold;
FOIL::CImage< CGrayImage16, GRAY16> highThreshold;
int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CBinarize< CGrayImage16, GRAY16, CGrayImage16, GRAY16,
CGrayImage8, GRAY8> Thresholding;
FOIL::err_ret status=-1;

 status = Thresholding . DynamicThreshold(inputGrayImage,
lowThreshold , highThreshold, FOIL:: RANGE_WITHIN_THRESHOLD,
foregroundPixle, backgroundPixle, BinarizedImage);

5.4 Required Classes for the Structuring APIs

Class: CStructureElement Class

Alacron Mvil User Manual

Page 61 of 100

Class: CStructureElement Class

Description: This template class will expose various structuring APIs used in
morphology operations.

Syntax: template <class ImageClass, int ImgTyp>

class CStructureElement

{

public:

static err_ret Erosion (CImage<ImageClass , ImgTyp>
inputImage, template_type templateSelection, int
foregroundPixel, int backgroundPixel, CImage<ImageClass ,
ImgTyp> * outputImage);

static err_ret Dilation (CImage<ImageClass , ImgTyp>
inputImage, template_type templateSelection, int
foregroundPixel, int backgroundPixel, CImage<ImageClass ,
ImgTyp> * outputImage);

static err_ret Open (CImage<ImageClass , ImgTyp>
inputImage, template_type templateSelection, int
repetitionFactor, int foregroundPixel, int backgroundPixel,
CImage<ImageClass , ImgTyp> * outputImage);

static err_ret Close (CImage<ImageClass , ImgTyp>
inputImage, template_type templateSelection, int
repetitionFactor, int foregroundPixel, int backgroundPixel,
CImage<ImageClass , ImgTyp> * outputImage);

}

Template
Parameters

ImageClass: Input should be of Cimage class type
 e.g.: CMatrix8, CGrayImage8, CGrayImage16, etc.
ImgType: Input should be of integer type
 e.g.: BLACKWHITE, GRAY8, etc.

Member
Functions: Erosion: This template function will erode the input image as per the

selected standard template.

Dilation: This template function will dilate the input image as per the
selected standard template.

Open: This template function will open the input image as per the

Alacron Mvil User Manual

Page 62 of 100

Class: CStructureElement Class

selected standard template.

Close: This template function will close the input image as per the
selected standard template.

5.5 Structuring API’s

1. CStructureElement::Erosion()
2. CStructureElement::Dilation()
3. CStructureElement::Open()
4. CStructureElement::Close()

Summary: Applies Erosion on the binarized image with a specified

template.
Syntax: err_ret CStructureElement::Erosion (CImage<ImageClass , ImgTyp>

inputImage, template_type templateSelection, int foregroundPixel, int
backgroundPixel, CImage<ImageClass , ImgTyp> * outputImage);

Arguments: inputImage: This is the binarized image that is to be eroded with the
specified template.It should be a valid input image and should not be
empty.
templateSelection: This is the type of NbyN template that will be used to
erode the input image. It assumes the values from FOIL enumerated types
TEMPLATE3x3, TEMPLATE5x5 and TEMPLATE7x7.
foregroundPixel: This is the pixel value which is to be compared across the
template and put if the all the pixels in the template comparison satisfies.
This should be the same foreground pixel value used for binarization.
backgroundPixel: This is the pixel value which is to be compared across
the template and put if none of the pixels in the template comparison
succeeds. This should be the same foreground pixel value used for
binarization.
outputImage: This is the resultant image of erosion. This should be non-
null.

Return: API execution status.
Description: The input image should have been binarized.

API performs the following operations to each pixel value.
if (inputImage[i][j] = = foregroundPixel for all corresponding pixels
having 1 in the selected template)
 outputImage[i][j] = foregroundPixel;
else
 outputImage[i][j] = backgroundPixel;

Example: FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;

Alacron Mvil User Manual

Page 63 of 100

Summary: Applies Erosion on the binarized image with a specified
template.
FOIL::CImage<CGrayImage8, GRAY8> ErodedImage;
 int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CStructureElement< CGrayImage8, GRAY8> Structuring;
FOIL::err_ret status=-1;

 status = Structuring . Erosion(BinarizedImage, FOIL:: TEMPLATE3x3,
foregroundPixel, backgroundPixle, ErodedImage);

Summary: Applies Dilation on the binarized image with a specified

template.
Syntax: err_ret CStructureElement::Dilation (CImage<ImageClass , ImgTyp>

inputImage, template_type templateSelection, int foregroundPixel, int
backgroundPixel, age<ImageClass , ImgTyp> * outputImage);

Arguments: inputImage: This is the binarized image that is to be dilated with the
specified template.This should be a valid input image and should not be
empty.
template: This is the type of NbyN template that will be used to dilate the
input image. It assumes the values from FOIL enumerated types
TEMPLATE3x3, TEMPLATE5x5 and TEMPLATE7x7.
foregroundPixel: Pixel value that is compared across all template pixels
and retained if there is at least one match. This should be the same
foreground pixel value used for binarization.
backgroundPixel: This is the pixel value which is to be compared across
the template and put if none of the pixels in the template comparison
succeeds. This should be the same foreground pixel value used for
binarization.
outputImage: This is the resultant image of dilation. This should be non-
null.

Return: API execution status.
Description: The input image should have been binarized.

API performs the following operations to each pixel value.
if (inputImage[i][j] = = foregroundPixel for any one of corresponding
pixels having 1 in the selected template)
 outputImage[i][j] = foregroundPixel;
else
 outputImage[i][j] = backgroundPixel;

Example: FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;
FOIL::CImage<CGrayImage8, GRAY8> DilatedImage;
int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CStructureElement< CGrayImage8, GRAY8> Structuring;

Alacron Mvil User Manual

Page 64 of 100

Summary: Applies Dilation on the binarized image with a specified
template.
FOIL::err_ret status=-1;

status = Structuring . Dilation(BinarizedImage, FOIL:: TEMPLATE5x5,
foregroundPixel, backgroundPixle, DilatedImage);

Summary: Applies Open on the binarized image with a specified template.
Syntax: err_ret Open (CImage<ImageClass , ImgTyp> inputImage, template_type

templateSelection, int repetitionFactor, int foregroundPixle, int
backgroundPixel, CImage<ImageClass , ImgTyp> * outputImage);

Arguments: inputImage: This is the binarized image that is to be opened with the
specified template. This should be a non-null object.
templateSelection: This is the type of NbyN template that will be used to
open the input image. It assumes the values from FOIL enumerated types
TEMPLATE3x3, TEMPLATE5x5 and TEMPLATE7x7.
repetitionFactor: This denotes the number of successive openings to be
performed. It should be a non negative value.
foregroundPixel: This is the foreground pixel value to be used in the
erosion and dilation APIs. This should be the same foreground pixel value
used for binarization.
backgroundPixel: This is the background pixel value to be used in the
erosion and dilation APIs. This should be the same foreground pixel value
used for binarization.
outputImage – This is the resultant image of opening. This should be non-
null.

Return: API execution status.
Description: The input image should have been binarized.

API performs the following operations:
For the number of times equal to repetitionFactor do the following
 Call Erosion();
 Call Dilation();

Example: FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;
FOIL::CImage<CGrayImage8, GRAY8> * OpenedImage;
int repetitionFactor = 5;
int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CStructureElement< CGrayImage8, GRAY8> Structuring;
FOIL::err_ret = -1;

status = Structuring . Open(BinarizedImage, FOIL:: TEMPLATE7x7,
repetitionFactor, foregroundPixel, backgroundPixle, OpenedImage);

Alacron Mvil User Manual

Page 65 of 100

Summary: Applies Close on the binarized image with a specified template.
Syntax: err_ret Close (CImage<ImageClass , ImgTyp> inputImage, template_type

templateSelection, int repetitionFactor, int foregroundPixle, int
backgroundPixel, CImage<ImageClass , ImgTyp> * outputImage);

Arguments: inputImage – This is the binarized image that is to be closed with the
specified template. This should be non-null.
templateSelection – This is the type of NbyN template that will be used to
open the input image. It assumes the values from FOIL enumerated types
TEMPLATE3x3, TEMPLATE5x5 and TEMPLATE7x7
repetitionFactor – This denotes the number of successive closing to be
performed. It should be a non negative value.
foregroundPixel – This is the foreground pixel value to be used in the
erosion and dilation APIs. This should be the same foreground pixel value
used for binarization.
backgroundPixel – This is the background pixel value to be used in the
erosion and dilation APIs. This should be the same foreground pixel value
used for binarization.
outputImage: This is the resultant image of closing. This should be non-
null.

Return: API execution status.
Description: The input image should have been binarized.

API performs the following operations:
For the number of times equal to repetitionFactor do the following
 Call Dilation();
 Call Erosion();

Example: FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage;
FOIL::CImage<CGrayImage8, GRAY8> * ClosedImage;
int repetitionFactor = 5;
int foregroundPixel = 100;
int backgroundPixel = 0;
FOIL::CStructureElement< CGrayImage8, GRAY8> Structuring;
FOIL::err_ret = -1;

status = Structuring . Close(BinarizedImage, FOIL:: TEMPLATE3x3,
repetitionFactor, foregroundPixel, backgroundPixle, ClosedImage);

6 MVIL LIBRARY: BLOB ANALYSIS

This section details the API’s built for BLOB analysis within the MViL library.

Alacron Mvil User Manual

Page 66 of 100

6.1 Labeling API’s

1. FOIL::LabelBLOBs()

Summary: Performs labeling operation on an input gray image.
Syntax: err_ret LabelBLOBs (CImage<ImageClass , ImgTyp> inputImage,

neighborhood_type templateSelection, int foregroundPixel,
CImage<blobImageClass , blobImgTyp> * blobImage, CBlobList&
blobList);

Arguments: inputImage: This is the binarized image that is to be labeled to define the
blobs. This should be the binarized and structured non-null object.

templateSelection: This is the type of neighborhood template that will be
used to define pixel touching in the input image. It assumes the values from
FOIL enumerated types NEIGHBORHOOD4 and NEIGHBORHOOD8.
foregroundPixel: The pixel value used while binarizing to represent the
foreground of the image.

blobImage: This is the output image that represents the labeled image with
pixels having the label values at each respective blobs. This should be a
non-null object.

blobList: This is also an output parameter. It has the list of all blobs
labeled and their corresponding pixel locations. This should be a non-null
object.

Return: API execution status.
Description: API labels each pixel in the input image with a value starting with 0 if the

touching defined by the template is true.
Example: FOIL::CImage<CGrayImage8, GRAY8> inputImage;

 FOIL::CImage<CgrayImage16, GRAY16> blobImage;
CBlobList blobList;
int foregroundPixel = 100;
FOIL::err_ret = -1;

err_ret = FOIL::LabelBLOBs(inputImage, FOIL:: NEIGHBORHOOD4,
foregroundPixel , blobImage, blobList);

6.2 Required Classes for Unary Feature Extraction APIs

Class: CUnaryFeature Class

Description: This template class will expose various APIs that will extract various
unary features from the labeled output image.

Alacron Mvil User Manual

Page 67 of 100

Syntax: template <class blobImageClass, int blobImgTyp>

class CUnaryFeature

{

public:

static CPoint<long> GetBLOBCentroid (CBlobList
blobList, unsigned long blobIndex);

static CBlobList GetBLOBPerimeter (CBlobList blobList,
CImage<blobImageClass , blobImgTyp> blobImage, unsigned
long blobIndex);

static unsigned long GetBLOBArea (CBlobList blobList,
unsigned long blobIndex);

static err_ret ExtractBLOB (CBlobList blobList,
CImage<blobImageClass, blobImgTyp> blobImage, unsigned
long blobIndex, int foregroundPixle, int backgroundPixle,
CImage<CGrayImage8, GRAY8> * binaryImage);

static CBoundingBox<long> GetBLOBBoundingBox
(CBlobList blobList, unsigned long blobIndex);

static float GetBLOBDiameter (CBlobList blobList,
unsigned long blobIndex);

static long GetBLOBHoleCount (CBlobList blobList,
CImage<blobImageClass , blobImgTyp> blobImage, unsigned
long blobIndex);

static CBlobList GetBLOBHoleList (CBlobList blobList,
CImage<blobImageClass , blobImgTyp> blobImage, unsigned
long blobIndex);

}

Template
Parameters

blobImageClass: Input should be of Cimage class type.
 e.g.: CGrayImage8, CGrayImage16, etc.
blobImgTyp: Input should be of integer type.
 e.g.: GRAY8, GRAY16, etc.

Member
Functions: GetBLOBCentriod: This template function will find the centroid of a

specified BLOB

GetBLOBPerimeter: This template function will find the perimeter of a
specified BLOB.

GetBLOBArea: This template function will find the area of a specified
BLOB ExtractBLOB: This template function will generate a binary
image of a specified BLOB.

Alacron Mvil User Manual

Page 68 of 100

GetBLOBBoundingBox: This template function will get the smallest
bounding box containing the specified BLOB

GetBLOBDiameter: This template function will get the diameter of the
specified BLOB.

GetBLOBHoleCount: – This template function will find the number of
holes in the specified BLOB.

GetBLOBHoleList: This template function will find the number of holes
in the specified BLOB.

6.3 Unary Feature Extraction API’s

1. CUnaryFeature::GetBLOBCentriod()
2. CUnaryFeature::GetBLOBPerimeter()
3. CUnaryFeature::GetBLOBArea()
4. CUnaryFeature::ExtractBLOB()
5. CUnaryFeature::GetBLOBBoundingBox()
6. CUnaryFeature::GetBLOBDiameter()
7. CUnaryFeature::GetBLOBHoleCount()
8. CUnaryFeature::GetBLOBHoleList()

Summary: Computes the centroid of a BLOB.
Syntax: CPoint<long> CUnaryFeature::GetBLOBCentriod (CBlobList blobList,

unsigned long blobIndex);

Arguments: blobList: This is the result of labeling operation on an input image. It has
the list of all BLOBs in a labeled image. The size of this list should not be
zero and should contain valid values.
blobIndex: It represents the index into the list. Its value should be between
1 and the size of blobList.

Return: Pixel location which is the centroid of the specified BLOB.
Description: API finds the centroid by averaging all pixel coordinates in a BLOB.
Example: CBlobList blobList;

unsigned long blobIndex = 3;
CPoint<long> centroid;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

centroid = UnaryFeatures . GetBLOBCentroid(blobList, blobIndex);

Summary: Computes the perimeter of a BLOB.
Syntax: CBlobList CUnaryFeature::GetBLOBPerimeter (CBlobList blobList,

CImage<blobImageClass, blobImgTyp> blobImage, unsigned long

Alacron Mvil User Manual

Page 69 of 100

Summary: Computes the perimeter of a BLOB.
blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.

Return: BLOB list, which depicts the pixel co-ordinates on the perimeter of the
BLOB. There can be multiple entries in the returned list if there are
containments.

Description: API gets the list of pixels that form the perimeter of the BLOB. It looks for
adjacency in the blob image.

Example: CBlobList blobList;
CImage<CgrayImage16, GRAY16> blobImage;
CBlobList perimeterList;
unsigned long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

perimeterList = UnaryFeatures . GetBLOBPerimeter(blobList, blobImage ,
blobIndex);

Summary: Computes the area of a BLOB.
Syntax: long CUnaryFeature::GetBLOBArea (CBlobList blobList, unsigned long

blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.

Return: Area of the specified blob.
Description: API counts the number of pixels in a BLOB and returns the computed

value as the area of the blob.
Example: CBlobList blobList;

unsigned long blobIndex = 3;
long blobArea;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

blobArea = UnaryFeatures . GetBLOBArea(blobList, blobIndex);

Summary: Extracts a BLOB by generating the binary image containing

that BLOB alone.
Syntax: err_ret CUnaryFeature::ExtractBLOB (CBlobList blobList,

CImage<blobImageClass, blobImgTyp> blobImage, unsigned long
blobIndex, int foregroundPixle, int backgroundPixle,
CImage<CGrayImage8, GRAY8> * binaryImage);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this

Alacron Mvil User Manual

Page 70 of 100

Summary: Extracts a BLOB by generating the binary image containing
that BLOB alone.
list should not be zero and should contain valid values.
blobImage: This is the labeled image containing BLOBs. It should be a
valid image and should not be empty.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.
foregroundPixel: The pixel value to be put in the foreground of the
resultant binary image.
backgroundPixel: The pixel value to be put in the background of the
resultant binary image.
binaryImage: This is the resultant binary image containing the image of
blob. This should be non-null.

Return: API execution status.
Description: For each pixel location in the entry of blobList[blobIndex], the API will

fill foregroundPixel and backgroundPixel in all other pixel locations.
Example: CBlobList blobList;

CImage<CGrayImage16, GRAY16> blobImage;
CImage<CGrayImage16, GRAY16> extractedBLOB;
char foreground Pixel = 1;
char backgroundPixel = 0;
unsigned long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;
FOIL::err_ret status = -1;

 status = UnaryFeatures . ExtractBLOB(blobList, blobImage, blobIndex,
foregroundPixel, backgroundPixel, extractedBLOB);

Summary: Finds the smallest bounding Box that encloses the BLOB.
Syntax: CBoundingBox<long> CUnaryFeature::GetBLOBBoundingBox

(CBlobList blobList, unsigned long blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.

Return: CBoundingBox object that contains the BLOB.
Description: API finds the pixel coordinates in the blob with the minimum and

maximum ‘x’ and ‘y’ co-ordinates. It also finds the smallest box that can
contain the blob irrespective of its orientation.

Example: CBlobList blobList;
CImage<long> boundingBox;
unsigned long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

Alacron Mvil User Manual

Page 71 of 100

boundingBox = UnaryFeatures . GetBLOBBoundingBox(blobList,
blobIndex);

Summary: Computes the diameter of the BLOB.
Syntax: float CUnaryFeature::GetBLOBDiameter (CBlobList blobList, long

blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex: It represents the index into the list.Its value should be between
1 and size of blobList.

Return: Maximum distance between any two pixels in a BLOB.
Description: API pairs different pixels in the BLOB and computes the distance between

every pair. The maximum of these distances is searched for.
Example: CBlobList blobList;

 float blobDiameter;
long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures

blobDiameter = UnaryFeatures . GetBLOBDiameter(blobList, blobIndex);

Summary: Computes the number of holes in a BLOB.
Syntax: long CUnaryFeature::GetBLOBHoleCount (CBlobList blobList,

CImage<blobImageClass, blobImgTyp> blobImage, unsigned long
blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobImage: This is the labeled image containing BLOBs. It should be a
valid image and should not be empty.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.

Return: Number of holes contained in a BLOB.
Description: API finds the number of other labels contained in a BLOB.
Example: CBlobList blobList;

CImage<CGrayImage16, GRAY16> blobImage;
long holeCount;
unsigned long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

holeCount = UnaryFeatures . GetBLOBHoleCount(blobList, blobImage,
blobIndex);

Summary: Get the list of holes that are contained in a BLOB.
Syntax: CBlobList CUnaryFeature::GetBLOBHoleList (CBlobList blobList,

Alacron Mvil User Manual

Page 72 of 100

Summary: Get the list of holes that are contained in a BLOB.
CImage<blobImageClass, blobImgTyp> blobImage, unsigned long
blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobImage: This is the labeled image containing BLOBs. It should be a
valid image and should not be empty.
blobIndex: It represents the index into the list. Its value should be between
1 and size of blobList.

Return: List of holes contained in a BLOB.
Description: API finds the list of other labels contained in a BLOB.
Example: CBlobList blobList;

CBlobList holesList;
CImage<CGrayImage16, GRAY16> blobImage;
unsigned long blobIndex = 3;
FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures;

holesList = UnaryFeatures . GetBLOBHoleList(blobList, blobImage,
blobIndex);

6.4 Required Classes for Binary Feature Extraction APIs

Class: CBinaryFeature Class

Description: This template class will expose various APIs that will extract various
binary features from the labeled output image.

Syntax: template <class blobImageClass, int blobImgTyp>

class CBinaryFeature

{

public:

static CDistance<long> GetBLOBDistance (CBlobList
blobList, unsigned long blobIndex1, unsigned long blobIndex2);

static char IsBLOBContained (CBlobList blobList,
CImage<blobImageClass , blobImgTyp> blobImage, unsigned
long blobIndex);

static char IsBLOBTouching (CBlobList blobList,
unsigned long blobIndex1, unsigned long blobIndex2,

Alacron Mvil User Manual

Page 73 of 100

Class: CBinaryFeature Class

neighborhood_type mode);

static CBlobList SortBLOBs (CBlobList blobList,
CImage<blobImageClass, blobImgTyp> blobImage, sort_type
sortCriteria);

}
Template
Parameters

blobImageClass:-Input should be of Cimage class type
 e.g.: CGrayImage8, CGrayImage16, etc.
blobImgTyp: Input should be of integer type
 e.g.: GRAY8, GRAY16, etc.

Member
Functions: GetBLOBDistance: This template function will find the minimum and

maximum distance between two given BLOBs.

IsBLOBContained: This template function will whether a given BLOB
is contained in any other BLOB.

IsBLOBTouching: This template function will whether a given pair of
BLOBs are touching each other.

SortBLOB: This template function will sort the blobs in the labeled
image based on a set criteria.

6.5 Binary Feature Extraction APIs

1. CBinaryFeature::GetBLOBDistance()
2. CBinaryFeature::IsBLOBContained()
3. CBinaryFeature::IsBLOBTouching()
4. CBinaryFeature::SortBLOBs()

Summary: Compute the distance between two BLOBs.
Syntax: CDistance<long> CBinaryFeature::GetBLOBDistance (CBlobList

blobList, unsigned long blobIndex1, unsigned long blobIndex2);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex1: This represents the index into the list for the first BLOB. Its
value should be between 1 and size of blobList.
blobIndex2: This represents the index into the list for the second BLOB.
Its value should be between 1 and size of blobList.

Return: Distance between two given BLOBs.
Description: The API finds the maximum and minimum distance between any pair of

pixel one in each BLOB.
Example: CBlobList blobList;

Alacron Mvil User Manual

Page 74 of 100

Summary: Compute the distance between two BLOBs.
CDistance<long> blobDistance;
unsigned long blobIndex1 = 1;
unsigned long blobIndex2 = 5;
FOIL:: CBinaryFeature <CGrayImage16, GRAY16 > BinaryFeatures;

blobDistance = BinaryFeatures . GetBLOBDistance(blobList, blobIndex1,
blobIndex2);

Summary: Find whether a BLOB is contained in another.
Syntax: char CBinaryFeature::IsBLOBContained (CBlobList blobList,

CImage<blobImageClass, blobImgTyp> blobImage, unsigned long
blobIndex);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobImage: This is the labeled image containing BLOBs. It should be a
valid image and should not be empty.
blobIndex: This represents the index into the list. Its value should be
between 1 and size of blobList.

Return: Boolean, whether the given BLOB is contained in another or not.
Description: The API finds whether a BLOB is contained in another or not.
Example: CBlobList blobList;

CImage<CGrayImage16, GRAY16> blobImage;
unsigned long blobIndex = 3;
char contained;
FOIL:: CBinaryFeature <CGrayImage16, GRAY16 > BinaryFeatures;

contained = BinaryFeatures . IsBLOBContained(blobList, blobImage,
blobIndex);

Summary: Find whether BLOB’s are touching.
Syntax: char CBinaryFeature::IsBLOBTouching (CBlobList blobList, unsigned

long blobIndex1, unsigned long blobIndex2, neighborhood_type mode);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobIndex1: This represents the index into the list for the first BLOB. Its
value should be between 1 and size of blobList.
blobIndex2: This represents the index into the list for the second BLOB.
Its value should be between 1 and size of blobList.
Mode: Specifies consideration for touching based on 4- or 8-
neighborhood.

Return: Boolean, whether the given BLOB’s are touching.

Alacron Mvil User Manual

Page 75 of 100

Summary: Find whether BLOB’s are touching.
Description: The API finds the distance between the BLOB’s and returns TRUE if

distance is 0.
Example: CBlobList blobList;

unsigned long blobIndex1 = 1;
unsigned long blobIndex2 = 5;
FOIL:: CBinaryFeature <CGrayImage16, GRAY16 > BinaryFeatures;

touching = BinaryFeatures . IsBLOBTouching(blobList, blobIndex1,
blobIndex2, FOIL:: NEIGHBORHOOD8);

Summary: Sorts the BLOB’s based on the set criteria.
Syntax: CBlobList CBinaryFeature::SortBLOBs (CBlobList blobList,

CImage<blobImageClass, blobImgTyp> blobImage, sort_type
sortCriteria);

Arguments: blobList: This is the list of all BLOBs in a labeled image. The size of this
list should not be zero and should contain valid values.
blobImage: This is the labeled image containing BLOBs. It should be a
valid image and should not be empty.
sortCriteria: This is the criteria based on which the sorting is performed.
The criteria range within the FOIL enumerated types of
INCREASING_AREA, DECREASING_AREA,
INCREASING_DIAMETER, DECREASING_DIAMETER,
INCREASING_HOLECOUNT and DECREASING_HOLECOUNT .

Return: Sorted list of BLOBs as per the set criteria.
Description: API returns the sorted list of BLOB’s as per the set criteria.
Example: CBlobList blobList;

CBlobList sortedList;
CImage<CGrayImage16, GRAY16> blobImage;
FOIL:: CBinaryFeature <CGrayImage16, GRAY16 > BinaryFeatures;

sortedList = BinaryFeatures . SortBLOBs (blobList, blobImage, FOIL::
DECREASING_AREA);

7 PRACTICAL DEMONSTRATION OF THE FOIL APIS

7.1 Application of Pattern Matching Extension of FOIL Library

Consider a typical automated defect detection procedure. The user may want to verify whether
the resistors plugged into a PCB are in correct slots. The defect detection setup will have an
image capturing mechanism, which will be feeding in the snap shots of the manufactured PCB’s.

Alacron Mvil User Manual

Page 76 of 100

There will be a reference image of the PCB with the resistors plugged into the correct slot. The
user will determine the coordinate location of the resistors on the reference image of the PCB
using the APIs supported in FOIL pattern recognition library. On getting the valid coordinate
locations of the resistors the defect detection setup will go on applying the pattern recognition on
the incoming snap shots of the PCB images, for location of the resistors. By comparing the
coordinate location with the ones obtained from the reference image, we could determine the
correctness of the slots into which the resistors are plugged in.

An application developer can solve the pattern-matching problem described above using one of
the 3 available approaches supported in FOIL. He could use:

 Image based normalised correlation
 Image based difference
 Geometric based pattern matching

techniques based on the input and pattern images. If the input image and pattern images have a
higher degree of correlation in terms of pixel contents the user will opt for either the Normalised
correlation approach or the less accurate but faster image- based-differnce approach. If the pattern
has well-defined geometric features then the user has the option of going with the geometric-
based-pattern-matching approach.

What ever be the approach selected by the user, he will have to follow certain well-defined
procedure in order to use FOIL to solve this problem.

FOIL supports a number of gray scale and color image formats. First and foremost the user will
have to determine on the image types that constitute his problem.

For example: The input image type for the problem is Grayscale 8 bit images.

FOIL has a template-based class CImage that abstracts the different image types.

1.1.1.1 FOIL::CImage<FOIL::CGrayImage8, GRAY8> inputImage

The above template instantiation will convey that inputImage is a CGrayImage8 class, which is a
FOIL class abstracting Gray scale 8-bit images. In addition to CImage class FOIL also supports
color images as CColourImage template class. It takes the colour image class and its respective
image type as template parameters. This can be instantiated as below.

FOIL::CColourImage<CRGBPlanar8, RGBPLANAR8> colourImage

In case of Image based correlation and Image based difference algorithms the user will have to
provide a pattern image also. FOIL::CImage<FOIL::CGrayImage8, GRAY8> patternImage

patternImage represents the pattern that is to be searched for in the input image. In case of the
geometric-based approach, the user doesn’t have to provide this patternImage. Instead, he will
have to provide the point pattern representation of the pattern which will define the geometric
property of the pattern to be searched.

In case where the user want to localize his pattern matching in both the patternImage and
inputImage, he could provide respective masks to define the ‘Region Of Interest’. If the whole
images are of interest, then the masks should be all non-zero values (preferably 1). Otherwise,
pixel locations of no interest will have pixel value ‘0’.

FOIL::CImage<FOIL::CGrayImage8, GRAY8> inputImageMask

FOIL::CImage<FOIL::CGrayImage8, GRAY8> patternMask

Alacron Mvil User Manual

Page 77 of 100

Once the image type is determined the user will have to build the model, which represents his
problem space for pattern matching. This model will maintain the pattern in various rotational
and scale hierarchy to achieve scale/rotational invariance while doing pattern matching.

The output generated by the ModelBuild api is a template based class called CCombinedModel.
This template class will take the image class, image type and point type as the instantiation
parameters. The point type is the type of the point that is defined as part of the point operator for
geometric-based pattern matching. The general criterion is that the point type will have to be a
data type that contains the range of the input image dimensions. It is advisable to define the point
type as unsigned long since it usually holds the larger dimension.

FOIL::CCombinedModel<FOIL::CGrayImage8,GRAY8,unsigned long> resultModel

resultModel will hold the result of ModelBuild API that will be used subsequently by the Locate
API.

The model build API will expect a pattern center of CPoint type in case of Image-based
correlation or Image-based difference approach

FOIL::CPoint<unsigned long> patternCentre
In the case of Image-based correlation and Image-based difference APIs, we will need to call the
ModelBuild API as below before calling the Locate API.

api_status = FOIL::ModelBuild (MODELIMAGECORRELATION, inputImage, patternImage,
inputImageMask, patternMask, scaleStart, scaleStep, scaleEnd, angleStart, angleStep, angleEnd,
resultModel, patternCentre)

parameter1: The type of approach for which the model is built. Only 2 valid selections are there
for this parameter viz, MODELIMAGECORRELATION and MODLEIMAGEDIFFERENCE.

parameter2: input image as described in the above section
parameter3: pattern image as described in the above section
parameter4: input ROI mask as described in the above section
parameter5: pattern ROI mask as described in the above section

parameter6: the starting scale factor. This should be a number greater than or equal to 1.

paramter7: this is the step value upon which various subsequent scales are computed. The
dimensions of the pattern image are multiplied by this factor subsequebtly to get new patterns of
various sales.

parameter8: this is the end value of scale factor that is to be applied on the pattern image. It is
advisable to limit the scale factors to the extent that the pattern image dimensions are always
less than or equal to the input image dimensions.

parameter9: this is the start angle of the rotation. The angle can have a valid range between 0
and 360.

parameter10: this represents the angle step which will be used for maintaining patterns at
various rotations.

parameter11: this represents the angle end
parameter12: this represents the object to catch the resultatnt model built by the api.

paramter13: this represents the Centre coordinates of the pattern. Normally the pattern center is
(pattern_rows/2,pattern_col/2)

Alacron Mvil User Manual

Page 78 of 100

In the case of geometric-based pattern matching, we need not call the ModelBuild API. Only a
preprocessing step is to be performed to add the base point patterns into the result model.

Assume the user defines three base-point pattern representations for the pattern that defines the
complete geometry of the pattern. The user will be adding the base-point patterns to the result
model as below.

CPatternElement is a template-based class that represents the point pattern definition of the
geometric pattern to be searched. It has the image, image type and point type. The point type
represents the data type to be used for the ‘point.’ If the user want to use Sobel as the point
operator, he should use the CPatternPointSobel template class in place of CPatternElement.

FOIL:: CPatternElement<FOIL::CGrayImage8, GRAY8,int> basePattern1
FOIL:: CPatternElement<FOIL::CGrayImage8, GRAY8,int> basePattern2
FOIL:: CPatternPointSobel <FOIL::CGrayImage8, GRAY8,int> basePattern3
resultModel.Geometric.PatternList.push_back(basePattern1)

resultModel.Geometric.PatternList.push_back(basePattern2)
resultModel.Geometric.PatternList.push_back(basePattern3)

With the above set of procedures, the user has successfully built his model upon which he can
apply the pattern location API. The Locate API will populate an object of CMatchList template-
based class which will have the list of scores and match locations. The Locate API is invoked in
the format shown below since a data type parameter that cannot be resolved prior to instantiation
is required. The various parameters of this class are the image class, its associated type, the point
type for the combined model which is dependent on the image dimensions, the data type for the
match list locations which is dependent on the image dimensions, and the data type which hold
the image pixel type.

api_status = FOIL::Locate< FOIL::CGrayImage8, GRAY8, unsigned long,unsigned long,
unsigned char>(MODELIMAGECORRELATION, threshold, resultModel, match)

parameter1: : The type of pattern matching metric to be applied viz,
MODELIMAGECORRELATION, MODLEIMAGEDIFFERENCE and MODELGEOMETRIC.

parameter2: This is the threshold to be specified across which the pattern matching results are
screened. For image-based correlation, it is between 0 and 1.0. For geometric- based difference, it
is a factor of the weight and value specified by the user in the base- point patterns. In case of
image-based difference, it is driven by the input image and pattern image.

parameter3: This is the result of the ModelBuild API in the case of the image-based difference or
correlation approach. It will be the preprocessed model with the base-point patterns populated for
geometric-based approach.

parameter4: This is the result of the Locate API with scores and located coordinate points.

7.2 Application of Calibration/Measurement Extension of FOIL Library

Consider an application wherein real world objects are to be measured from digital images
captured using a camera. The user will have to follow certain procedures using the FOIL library
in order to achieve this goal.

Alacron Mvil User Manual

Page 79 of 100

The measuring procedure starts with a series of calibration procedures on the imaging setup. A
specific imaging setup will require a number of corrections to be applied on its generated image
in order to facilitate accurate measuring. FOIL provides a number of calibration APIs. The
calibration APIs are member functions of a template-based class CCalibratedImage. This class
needs to be instantiated before using any type of Calibration API. The template parameters
required for instantiation are the image class, the corresponding image type and the image pixel
data type. So if the calibration is to be performed on Grayscale 8 bit images, the user will
instantiate the CCalibratedImage as follows:

FOIL::CCalibratedImage< CGrayImgae8, GRAY8,char> calibrationObj

If the calibration is to be done on a color image, the user should instantiate CCalibratedImage
class as follows:

FOIL::CCalibratedImage< CRGBPlanar8, RGBPLANAR8,char> calibrationObj

The user could use any of the following APIs to perform calibration on the image to be measured.
If the user want to perform dark field correction, then he could call the respective API with the
respective inputs as shown below:

FOIL::CImage<CGrayImage8, GRAY8> outputImage
FOIL::CImage<CGrayImage8, GRAY8> inputImage
FOIL::CImage<CMatrixF, FLOAT> correctionFactor
float** gain
outputImage = calibrationObj . DarkFieldCorrection(inputImage,

correctionFactor,gain)
parameter1: image to be corrected.
parameter2: correction image to be applied
parameter3: gain factor to be applied to each pixel location

The API will return the corrected image.

If the user needs to perform calibration on color images, then he will instantiate the
CColourImage template-based class for input and output calling the overloaded dark field
correction algorithm. An example os this type of calibration on a color image is:

FOIL::CColourImage<CRGBPlanar8, RGBPLANAR8> outputImage
FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage
FOIL::CImage<CMatrixF, FLOAT> RedFactor
FOIL::CImage<CMatrixF, FLOAT> GreenFactor
FOIL::CImage<CMatrixF, FLOAT> BlueFactor
float** redGain
float** greenGain
float** blueGain

outputImage = calibrationObj . DarkFieldCorrection(inputImage, RedFactor, GreenFactor,
BlueFactor, redGain, greenGain, blueGain)

parameter1: the image to be corrected
parameter2: the correction image for RED channel
parameter3: the correction factor for GREEN channel
parameter4: the correction factor for BLUE channel

Alacron Mvil User Manual

Page 80 of 100

parameter5: the gain to be applied on each pixel in RED channel
parameter6: the gain to be applied on each pixel in GREEN channel
parameter7: the gain to be applied on each pixel in BLUE channel

This API will return the corrected image.
If the user wants to perform Chromatic aberration correction, he could call the following API.

FOIL::CColourImage<CRGBPlanar8, RGBPLANAR8> outputImage
FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage
double Rscale
double Gscale
double Bscale
double centreX
double centreY

outputImage = calibrationObj . ColourAberrationCorrection (inputImage, Rscale, Gscale,
Bscale,centreX, centreY)

parameter1: the input image to be corrected
parameter2: scale factor to be applied on the RED channel
parameter3: scale factor to be applied on the GREEN channel
parameter4: scale factor to be applied on the BLUE channel
parameter5: the Xcenter of the scale.
parameter6: the Ycenter of the scale
This API will return the corrected image

If user wants to perform scale correction, he could use the following:
 FOIL::CImage<CGrayImage8, GRAY8> outputImage

FOIL::CImage<CGrayImage8, GRAY8> inputImage
float XScale
float YScale
float XShear
float YShear
float XTrans
float YTrans

outputImage = calibrationObj . ScaleCorrection (inputImage, XScale, YScale,

XShear, YShear, XTrans, YTrans)
parameter1: the image to be corrected.
parameter2: scale factor on X direction
parameter3: scale factor on Y direction
parameter4: shear factor on X direction
parameter5: translation factor in X direction
parameter6: translation factor in Y direction
This API will return the corrected image.

If user wants to perform perspective correction, he should use the following:

Alacron Mvil User Manual

Page 81 of 100

FOIL::CImage<CGrayImage8, GRAY8> outputImage
FOIL::CImage<CGrayImage8, GRAY8> inputImage
FOIL:: CVector<long> u_vector
FOIL:: CVector<long> v_vector
FOIL:: CVector<long> n_vector
float L

outputImage = calibrationObj . PerspectiveCorrection (inputImage, u_vector, v_vector,
n_vector, L)

parameter1: image to be corrected
parameter2: The u transformation vector to be applied
parameter3: the v transformation vector to be applied
parameter4: the n transformation vector to be applied
parameter5: the sensor specification
This API will return the corrected image.

In order to make the measurements in real world metrics, there should be a method to translate
the image measurements to real measurements. For this, the user will use an array-of-dots image
of known distance. He will be subjecting this image to all the corrections to calibrate his input
image. After performing correction on the array-of-dots image, FOIL provides the user with a set
of APIs which will help him to translate image measurements to real measurements. The user will
instantiate an object of CCoordinateSystem template-based class. The parameters of this
template class are the number of holes in the row (the convention is that the array-of-dots image
will be constituted on an NxN matrix of filled holes which are equidistant in both X and Y
directions), Image class, image type and the point type that is to be passed for the geometric point
pattern representation of a hole. This API uses the geometric-pattern matching to locate the holes
in the array-of-dots image and define the translation factor accordingly. For a 10x10 array-of-dots
grayscale 8-bit image, the user will instantiate the CCoordinateSystem class as follows:

FOIL::CCoordinateSystem<10,char, CGrayImage8, GRAY8> ordinate
FOIL provides the user with the following APIs to enable him to translate the image
measurements to real world measurements. FOIL defines a SetMeasurementCoordinates API for
this:

FOIL::CImage<CGrayImage8, GRAY8> arrayOfDots10by10Image
FOIL::CImage<CGrayImage8, GRAY8> pointPattern
float threshold = 1

ordinate . SetMeasurementCoordinates(arrayOfDots10by10Image, pointPattern, threshold)

FOIL provides the user with GetUnitInPixels to get the translation factor to be applied to extract
real world measurements from image measurement units.

int dotLength
dotLength = ordinate . GetUnitInPixels(void)

This API will return the translation factor to be used to convert the image measurements to real
world measurements.

The user may want to find the orientation of the object from the input image which contains the
object to be measured. FOIL assumes a single object is present in the input image to be oriented.
FOIL provides four APIs that will help the user in determining the orientation of the object. In

Alacron Mvil User Manual

Page 82 of 100

order to use the orientation algorithms, the user will have to instantiate an object of the COrient
template-based class. The template parameters are the position type which defines the data type to
hold the top-left coordinate locations of the bounding box rectangle object, and the size type
which defines the data type to hold the type of the object holding length and height of the
bounding box rectangle object. Both are dependent on the image dimensions. The remaining
parameters to the template are the image class, its respective image type and the data type of the
pattern point for the filled hole to be searched in the array-of-dots image.

FOIL::COrient<int,int, CGrayImage8, GRAY8,int> orientObj
The various APIs provided by FOIL to assist the user in determining the orientation of the object
are as follows. The user can use the GetBoundinBox API to get the minimum bounding box that
contains the object.

FOIL::CImage<CGrayImage8, GRAY8> objectImage
FOIL::CRectangle<int,int> minBoundingBox
minBoundingBox = orientObj . GetBoundingBox (objectImage) parameter1: The

input image that has the single object whose orientation is to be found.
This API will return the minimum bounding box that can hold the image.

Based on the geometry of the object, the user may not be able to find its orientation just by
getting the minimum bounding box. In that case, the user could use the FindHole API to locate a
hole in the object to determine the orientation. This API should be called after calling the
GetBoundingBox API.

FOIL::CImage<CGrayImage8, GRAY8> objectImage
FOIL:: CPatternElement<int, CGrayImage8, GRAY8> holePointPattern
FOIL::CRectangle<int,int> minBoundingBox
float threshold = 1
FOIL::HolesList holes

return = orientObj . FindHole (objectImage, holePointPattern, minBoundingBox, threshold,
holes)

parameter1: input image containing the single object whose orientation is to be determined

parameter2: point pattern representation of the filled hole.
parameter3: the bounding box within which the hole is to be located.
parameter4: the threshold to be applied locating the hole.

parameter5: the holes list returned by the api which contains the location where all the holes are
found.

FOIL also provides another API, FindLine, to find the orientation of the object. This API also
should be called after calling the GetBoundingBox API. This API will find the location of a line
segment of the specified length on the object boundary.

FOIL::CImage<CGrayImage8, GRAY8> objectImage
FOIL::CRectangle<int,int> minBoundingBox
FOIL::CLineSegment<long> line
long length = 25

return = orientObj . FindLine (objectImage, length, minBoundingBox, line)

Alacron Mvil User Manual

Page 83 of 100

parameter1: the image containing the single object to be oriented
parameter2: the length of the line to be located

parameter3: this specifies the bounding box area in the image where the location of the line is to
be limited to.

parameter4: this is coordinates of the located line segment.
FOIL provides another API, FindCorner, to determine the orientation. This API also should be
called after GetBoundingBox API.

FOIL::CImage<CGrayImage8, GRAY8> objectImage
FOIL::CRectangle<int,int> minBoundingBox
FOIL::CornerPairs corners

return = orientObj . FindCorner (objectImage, minBoundingBox, corners)

parameter1: the input image which contains the object whose orientation to be found.

parameter2: the boundinx box area inside the image where the location for linesegments with a
common vertex is to be limited.

parameter3: The result of the corner located which is the coordinates of the 2 lines segments
having a common vertex.

Once the user has determined the orientation of the object whose features are to be measured, he
could define his measurement tools on the image from which the measurement is to be extracted.
If the user needs to find the length of an edge of the object, given the computed orientation of that
object edge he coulde measurement tools perpendicular to the edge direction to get accurate
measurements. FOIL provides the user with a template-based class to define the measurement
tool called CMeasure. The user will have to instantiate the CMeasure object in order to use the
Measure and other Fit APIs. This template class accepts classes of type image class, image type,
point type, (depending on the image dimensions) and image data type that is the type to hold the
image type.

FOIL::CMeasure< CGrayImage8, GRAY8,long,char> measuringObj
Once the measuring object is instantiated, the user could use the various methods to extract the
point sets from the defined measurement tool and fit different geometries to the extracted points.
FOIL provides the Measure API that will extract the point set using a single pixel edge detection
with the measurement tool defined by the user. The user orients the measurement tool based on
the orientation of the object.

FOIL::CMeasurementTool<long> toolset
FOIL::CPointSet<long> points

FOIL::CImage<CGrayImage8, GRAY8> objectImage
points = measuringObj . Measure (toolset, objectImage)

paramter1: the measurement tool set comprising of a series of linesegments across which the
single pixel edge detection is to be performed.

parameter2: the image that contains the object whose feature is to be measured.
This API will return the point set resultatnt from the edge detection run over the user-defined
toolset.

Alacron Mvil User Manual

Page 84 of 100

Once the user has detected the point set across his measurement tool, he can use various Fit
algorithms to fit the geometry on the point set whose features can be extracted. FOIL provides the
overloaded Fit API for fitting a line and circle. This API should be called after calling the
Measure API. The following demonstrates the FOIL Fit API call to fit a line into a give point set.

FOIL::CPointSet<long> points
FOIL::CLineSegment<long> FittedLine
return = measuringObj . Fit (points, FittedLine)

parameter1: the point set extracted by the Measure API call into which a line is to be fitted

parameter2: the line fitted into the point set whose features could be extracted.

Alacron Mvil User Manual

Page 85 of 100

The following demonstrates the FOIL Fit API call to fit a circle into the given point set.

FOIL::CPointSet<long> points
FOIL::CCircle<long> FittedCircle

return = measuringObj . Fit (points, FittedCircle)

parameter1: the point set extracted by the Measure API call into which a circle is to be fitted

parameter2: the circle fitted into the point set whose features could be extracted
FOIL also provides an API that will perform the single pixel edge detection along the specified
line segment on the image. The Measure API uses the DetectEdge API internally to get the point
sets.

FOIL::CPointSet<long> point
FOIL::CLineSegment<long> lineSegment
FOIL::CImage< CGrayImage8, GRAY8> image

point = measuringObj .DetectEdge(lineSegment, image)
parameter1: the line segment along which the edge detection is to be performed.
parameter2: the image upon which the edge detection is to be performed.
This API will return the detected edge point along the line segment.

Once the user has fit definite geometries (line or circle) into the collected point set, FOIL
provides a set of Spatial and Photometric APIs to the user to make actual measurement of
features. The user should instantiate an object of CSpatialMetricTools template class. This
template takes the point type which is the data type to hold the coordinate points which is
dependent on the image dimensions, the row holes which is same as the number of holes in a row
in the array-of-dots image, the image class and its corresponding image type.

FOIL::CSpatialMetricTools<10, CGrayImage8, GRAY8> SpatialTool
If the user needs to extract the length between 2 end points of a line segment in the X direction,
FOIL provides the XLength API.

FOIL::CLineSegment<int> line
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
length = SpatialTool . XLength (line, ordinate10by10)
parameter1: the fitted line segment from the point set extracted by the Measure

API.
parameter2: the coordinate system which is to be used for translating the image
measurement into real world meaurement.
This API will return the length of a line segment along the X axis.

If the user needs to extract the length between 2 end points of a line segment in the Y direction,
FOIL provides the YLength API.

FOIL::CLineSegment<int> line
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
length = SpatialTool . YLength (line, ordinate10by10)

Alacron Mvil User Manual

Page 86 of 100

parameter1: the fitted line segment from the point set extracted by the Measure api.

parameter2: the coordinate system which is to be used for translating the image measurement
into real world meaurement.

This API will return the length of a line segment along the Y axis.

If the user needs to extract the absolute length a line segment, FOIL provides the Length API.

FOIL::CLineSegment<int> line
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
length = SpatialTool . Length (line, ordinate10by10)
parameter1: the fitted line segment from the point set extracted by the Measure

API.
parameter2: the coordinate system which is to be used for translating the image

measuremenst into real world meaurements.
This API will return the absolute length of a line segment.

If the user needs to extract angle made by a line segment with X-axis, FOIL provides the XAngle
API.

FOIL::CLineSegment<int> line

angle = SpatialTool . XAngle (line);
parameter1: the fitted line segment from the point set extracted by the Measure

api.
This API will return the angle in degrees made by the line segment with X axis.

If the user needs to extract angle made by a line segment with Y-axis, FOIL provides the YAngle
API.

FOIL::CLineSegment<int> line
angle = SpatialTool . YAngle (line);

parameter1: the fitted line segment from the point set extracted by the Measure
api.
This API will return the angle in degrees made by the line segment with Y axis.

If the user needs to extract angle made by a line segment with X-axis, FOIL provides the XAngle
API.

FOIL::CLineSegment<int> line

angle = SpatialTool . XAngle (line);
parameter1: the fitted line segment from the point set extracted by the Measure api.

This API will return the angle in degrees made by the line segment with X axis.

If the user needs to extract angle made by a line segment with the other, FOIL provides the Angle
API.

FOIL::CLineSegment<int> line1
FOIL::CLineSegment<int> line2

angle = SpatialTool . Angle (line1,line2);

Alacron Mvil User Manual

Page 87 of 100

parameter1: the fitted line segment from the point set extracted by the Measure
api.

parameter2: the fitted line segment from the point set extracted by the Measure
api.
This API will return the angle in degrees made by the line segment1 with line segment2.

If the user want to find the angle inscribed in an arc, FOIL provides him the overloaded version
of Angle API.

FOIL::CArc<int> arc

angle = SpatialTool . Angle (arc) parameter1: this is the arc whose inclusive
angle is to be measured.
This API will return the inscribing angle made by the radial line segment of the arc at its end
points.

If user wants to determine the diameter of the circle fitted by the Measure api, FOIL provides the
Diameter API.

FOIL::CCircle<int> circle
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
diameter = SpatialTool . Diameter (circle, ordinate10by10)

parameter1: the circle fitted by the Measure api whose diameter is to be computed in real world
units.

parameter2: the coordinate system which is to be used for translating the image measurement
into real world measurement.

This API will return the diameter of the circle in real world units.

If user wants to determine the radius of the circle fitted by the Measure API, FOIL provides the
Radius API.

FOIL::CCircle<int> circle
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
radius = SpatialTool . Radius (circle, ordinate10by10)
parameter1: the circle fitted by the Measure api whose radius is to be computed

in real world units.
parameter2: the coordinate system which is to be used for translating the image

measurements into real world measurements.
This API will return the radius of the circle in real world units.

If user wants to find out the area on an image specified by a region, FOIL provides the Area API.

FOIL::CRegion<int> searchArea
FOIL::CCoordinateSystem<10,int, CGrayImage8, GRAY8> ordinate10by10
area = SpatialTool . Area (searchArea, ordinate10by10) parameter1: the region

whose area is to be computed in real world units. parameter2: the coordinate system
which is to be used for translating the image measurements into real world
measurements.

Alacron Mvil User Manual

Page 88 of 100

This API will return the area of the region in real world units.

In addition to spatial metric tools, FOIL also provides the user with a set of Photometric
measurement APIs. The user will have to instantiate an object of CPhotometricTools template-
based class. The parameters of this template class are the color type that denotes the data type to
hold the pixel intensity value which is dependend on the image type, the point type that defines
the type to contain the image region coordinates which are dependent on the image dimensions,
the image class and its respective image type.

FOIL::CPhotoMetricTools<int, int, CRGBPlanar8, RGBPLANAR8> PhotometricTool
FOIL supply two photometric measurement APIs. GetAverageColour is the API that will get the
average intensity of each color channel in the specified region of the image. This API is meant for
color scale images alone.

FOIL::CRegion<int> searchArea
FOIL::CColour<int> AverageColour
FOIL::CColourImage< CRGBPlanar8, RGBPLANAR8> inputImage

AverageColour = PhotometricTool . GetAverageColour (searchArea,

inputImage)
parameter1: this is the area on the input image where the average colour

intensity is to be computed.
parameter2: This is the input image upon which the intensity value is computed.

This API will return the average colour intensity for each channel.

If the user wants to find out the average gray scale value of an image in a specified region, FOIL
provides the GetAverageGray API. This API is meant for gray scale images alone.

FOIL::CRegion<int> searchArea;
FOIL::CImage< CGrayImage8, GRAY8> inputImage;
averageGray = PhotometricTool . GetAverageGray (searchArea, inputImage)
parameter1: this is the area on the input image where the average gray scale is to

be computed
parameter2: This is the input image upon which the gray value is computed.

This API will return the average gray scale in the image on the specified region.

With the above set of measurement APIs, FOIL enables the user to perform various feature
measurements that can be used in real applications.

7.3 Application of Morphology/BLOB Analysis Extension of FOIL Library

Consider a typical application where the user wants to automate the process of computing the
number of specifically-shaped pills manufactured in a pharmaceutical production process. The
imaging system will provide snap shots of each sector of the produced pills on the conveyor belt.
The user will have to make an application that will count for the number of pills manufactured
with a specific diameter. Here the diameter of a pill is the distinguishing factor. FOIL gives the
morphology and BLOB analysis extension to approach this problem.

Morphology extension of FOIL is used as a preprocessing step to the BLOB analysis phase that
actually enables the user to extract the BLOB features. FOIL provides a set of Morphology APIs

Alacron Mvil User Manual

Page 89 of 100

that will prepare the images to be labeled in the subsequent BLOB analysis phase. The user will
have to instantiate a CBinarize class to get access to the morphology APIs related with
thresholding. This is a template-based class that takes the input image class and its associated
type, the threshold image class and its associated type and the output image class and its
associated type as template parameters. The image types are Gray scale images. It is always
preferable to have the background pixel put a s ‘0’ as some of the following logic will expect the
background pixel to be zero.

FOIL::CBinarize< CGrayImage16, GRAY16, CGrayImage8, GRAY8, CGrayImage8, GRAY8>
Thresholding

FOIL provides two APIs to perform Thresholding. FOIL support the FixedThreshold API as one
version of this.

FOIL::CImage<CGrayImage8, GRAY8> inputGrayImage
FOIL::CImage<CGrayImage8, GRAY8> * BinarizedImage
int lowThreshold = 40
int highThreshold = 70
int foregroundPixel = 100
int backgroundPixel = 0

status = Thresholding . FixedThreshold(inputGrayImage, lowThreshold ,

highThreshold, FOIL::RANGE_OUTSIDE_THRESHOLD, foregroundPixel,
backgroundPixel, BinarizedImage)

parameter1: the gray scale input image on which thresholding is to be done.
parameter2: the lower value of threshold.
parameter3: the upper value of threshold.

parameter4: specification whether the range is to checked is within or beyond the
specified thresholds.

parameter5: the pixel value to be put in the foreground of the binarized image.
parameter6: the pixel value to be put in the background of the binarized image.
parameter7: the resultant image of thresholding.

FOIL also support the dynamic thresholding for binarising the images. The user can use the same
interface to return thresholding image as either 8-bit gray scale or 16-bit gray scale.

FOIL::CImage<CGrayImage16, GRAY16> inputGrayImage
FOIL::CImage<CGrayImage8, GRAY8> * BinarizedImage
FOIL::CImage< CGrayImage16, GRAY16> lowThreshold
FOIL::CImage< CGrayImage16, GRAY16> highThreshold
int foregroundPixel = 100
int backgroundPixel = 0

status = Thresholding . DynamicThreshold(inputGrayImage, lowThreshold ,

highThreshold, FOIL:: RANGE_WITHIN_THRESHOLD, foregroundPixle,
backgroundPixle, BinarizedImage)

parameter1: the gray scale input image on which thresholding is to be done.
parameter2: the image having lower value of threshold across each pixel.
parameter3: the image having upper value of threshold across each pixel.

Alacron Mvil User Manual

Page 90 of 100

parameter4: specification whether the range is to checked is within or beyond the
specified thresholds.

parameter5: the pixel value to be put in the foreground of the binarized image.
parameter6: the pixel value to be put in the background of the binarized image.
parameter7: the resultant image of thresholding

Once the user has binarized the input image, then FOIL supplies him with a number of structuring
element APIs that will condition the binarized image for labeling in BLOB analysis phase. The
user will have to instantiate an object of CStructureElement template-based class. This template
class takes the image class and its respective type as the parameters.

FOIL::CStructureElement< CGrayImage8, GRAY8> Structuring

Alacron Mvil User Manual

Page 91 of 100

The various structuring APIs provided by FOIL are detailed below. The user can use the Erosion
API for structuring his binarized image:

FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage
FOIL::CImage<CGrayImage8, GRAY8> * ErodedImage
int foregroundPixel = 100
int backgroundPixel = 0

status = Structuring . Erosion(BinarizedImage, FOIL:: TEMPLATE3x3, foregroundPixel,
backgroundPixle, ErodedImage)

parameter1: the binarized input image that is to be eroded.
parameter2: the template type to be used for erosion.
parameter3: the pixle value to be put in foreground.

parameter4: the pixel value to be put in the background
parameter5: the resultant image of erosion.

If the user want to dilate the binarized image then he could use the Dilation API in FOIL.
FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage
FOIL::CImage<CGrayImage8, GRAY8> * DilatedImage
int foregroundPixel = 100
int backgroundPixel = 0

status = Structuring . Dilation(BinarizedImage, FOIL:: TEMPLATE5x5, foregroundPixel,
backgroundPixle, DilatedImage)

parameter1: the binarized input image that is to be dilated.
parameter2: the template type to be used for dilation.
parameter3: the pixle value to be put in foreground.
parameter4: the pixel value to be put in the background
parameter5: the resultant image of erosion.

If the user want to perform opening on the binarized image, FOIL provides him with the Open
API.

FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage
FOIL::CImage<CGrayImage8, GRAY8> * OpenedImage
int repetitionFactor = 5
int foregroundPixel = 100
int backgroundPixel = 0

status = Structuring . Open(BinarizedImage, FOIL:: TEMPLATE7x7, repetitionFactor,
foregroundPixel, backgroundPixle, OpenedImage)

parameter1: the binarized input image that is to be opened.
parameter2: the template type to be used for opening.
parameter3: the number of times opening is to be performed.
parameter4: the pixle value to be put in foreground.
parameter5: the pixel value to be put in the background
parameter6: the resultant image of opening

Alacron Mvil User Manual

Page 92 of 100

If the user want to perform closing on the binarized image, FOIL provides him with the Close
API.

FOIL::CImage<CGrayImage8, GRAY8> BinarizedImage
FOIL::CImage<CGrayImage8, GRAY8> * ClosedImage
int repetitionFactor = 5
int foregroundPixel = 100
int backgroundPixel = 0

status = Structuring . Close(BinarizedImage, FOIL:: TEMPLATE3x3, repetitionFactor,
foregroundPixel, backgroundPixle, ClosedImage)

parameter1: the binarized input image that is to be closed.
parameter2: the template type to be used for closing.
parameter3: the number of times closing is to be performed.
parameter4: the pixle value to be put in foreground.
parameter5: the pixel value to be put in the background
parameter6: the resultant image of closing

After the conditioning of the gray scale image is done using the Morphology APIs the user is
ready to start the BLOB analysis phase. The primary step of doing BLOB analysis is to label the
conditioned binarized image into distinct BLOBs. FOIL provides LabelBLOBs API for achieving
this goal. This is a template-based function which can be instantiated with required input
parameters.

FOIL::CImage<CGrayImage8, GRAY8> inputImage
FOIL::CImage<CgrayImage16, GRAY16> * blobImage
CBlobList blobList
int foregroundPixel = 100

err_ret = FOIL::LabelBLOBs(inputImage, FOIL:: NEIGHBORHOOD4, foregroundPixel ,
blobImage, blobList)

paramter1: this is the conditioned binarized image to be labeled.
parameter2: the neighborhood type to be used for defining the BLOB touching.
parameter3: the labeled image output.

parameter4: the blob list object containing the list of all points in all BLOBs respectively.

Once the user has successfully labeled the image then he can use either the unary feature APIs or
binary feature APIs to extract the BLOB characteristics. The user will have to instantiate an
object of CUnaryFeature template-based class. The template-based class will take blob image
class and respective image type as the parameters.

FOIL::CUnaryFeature<CGrayImage16, GRAY16> UnaryFeatures
If the user wants to extract the centroid of a specified blob he can use the GetBLOBCentroid API
provided in FOIL.

CBlobList blobList
unsigned long blobIndex = 3
CPoint<long> centroid

Alacron Mvil User Manual

Page 93 of 100

centroid = UnaryFeatures . GetBLOBCentroid(blobList, blobIndex) parameter1:
the blob list generated by the previous labeling operation. parameter2: the 1 based index
for the BLOB whose feature is to be determined.

This API will return the centroid of the specified BLOB.
If the user wants to extract the perimeter of a specified blob he can use the GetBLOBPerimeter
API provided in FOIL.

CBlobList blobList
CImage<CgrayImage16, GRAY16> blobImage
CBlobList perimeterList
unsigned long blobIndex = 3;

perimeterList = UnaryFeatures . GetBLOBPerimeter(blobList, blobImage , blobIndex)

parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.
parameter3: the 1 based index for the BLOB whose feature is to be determined.

This API will return the perimeter of the specified BLOB.

If the user wants to extract the area of a specified blob he can use the GetBLOBArea API
provided in FOIL.

CBlobList blobList
unsigned long blobIndex = 3
long blobArea;

blobArea = UnaryFeatures . GetBLOBArea(blobList, blobIndex)
parameter1: the blob list generated by the previous labeling operation.
parameter2: the 1 based index for the BLOB whose feature is to be determined.

This API will return the area of the specified BLOB.

If the user wants to extract the binary image of a specified blob he can use the ExtractBLOB API
provided in FOIL.

CBlobList blobList
CImage<CGrayImage16, GRAY16> blobImage
CImage<CGrayImage16, GRAY16> * extractedBLOB
char foreground Pixel = 1
char backgroundPixel = 0
unsigned long blobIndex = 3

status = UnaryFeatures . ExtractBLOB(blobList, blobImage, blobIndex, foregroundPixel,
backgroundPixel, extractedBLOB)

parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.

parameter3: the 1 based index for the BLOB whose feature is to be determined.
parameter4: the pixel value to be put in foreground.
parameter5: the pixel value to be put in background.

Alacron Mvil User Manual

Page 94 of 100

parameter6: the binary image containing the extracted BLOB alone.

If the user wants to extract the smallest bounding box containing the specified blob he can use the
GetBLOBBoundingBox API provided in FOIL.

CBlobList blobList
CImage<long> boundingBox
unsigned long blobIndex = 3

boundingBox = UnaryFeatures . GetBLOBBoundingBox(blobList, blobIndex)
parameter1: the blob list generated by the previous labeling operation.
parameter2: the 1 based index for the BLOB whose feature is to be determined.

This API will return the minimum bounding box that can contain the specified

BLOB.

If the user wants to extract the diameter of a specified blob he can use the GetBLOBDiameter
API provided in FOIL.

CBlobList blobList
float blobDiameter
long blobIndex = 3

blobDiameter = UnaryFeatures . GetBLOBDiameter(blobList, blobIndex)
parameter1: the blob list generated by the previous labeling operation.
parameter2: the 1 based index for the BLOB whose feature is to be determined.

This API will return the diameter of the specified BLOB.

If the user wants to extract the number of holes in a specified blob he can use the
GetBLOBHoleCount API provided in FOIL.

CBlobList blobList
CImage<CGrayImage16, GRAY16> blobImage
long holeCount

holeCount = UnaryFeatures . GetBLOBHoleCount(blobList, blobImage, blobIndex)

parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.
parameter3: the 1 based index for the BLOB whose feature is to be determined.
This API will return the number of holes contained in the specified BLOB.

If the user wants to extract the list of holes in a specified blob he can use the GetBLOBHoleList
API provided in FOIL.

CBlobList blobList
CBlobList holesList
CImage<CGrayImage16, GRAY16> blobImage
unsigned long blobIndex = 3

holesList = UnaryFeatures . GetBLOBHoleList(blobList, blobImage, blobIndex);

Alacron Mvil User Manual

Page 95 of 100

parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.
parameter3: the 1 based index for the BLOB whose feature is to be determined.
This API will return the list of all holes contained in the specified BLOB.

In addition to the unary features depicted above, FOIL also provides some APIs that extract the
binary features of BLOBs. User will have to instantiate an object of CBinaryFeature template
class. This template takes the blob image class and its respective type as the parameters.

FOIL:: CBinaryFeature <CGrayImage16, GRAY16 > BinaryFeatures

The FOIL supports a number of binary features. If the user wants to determine the distance
between 2 BLOBs, FOIL provides the user with GetBLOBDistance API.

CBlobList blobList
CDistance<long> blobDistance
unsigned long blobIndex1 = 1
unsigned long blobIndex2 = 5

blobDistance = BinaryFeatures . GetBLOBDistance(blobList, blobIndex1, blobIndex2)

parameter1: the blob list generated by the previous labeling operation.
parameter2: the 1 based index for one of the BLOB whose feature is to be determined.

parameter2: the 1 based index for one of the BLOB whose feature is to be determined.

This API will return the distance between the 2 specified BLOBs.

If the user wants to determine whether a BLOB is contained in another, FOIL provides the user
with IsBLOBContained API.

CBlobList blobList
CImage<CGrayImage16, GRAY16> blobImage
unsigned long blobIndex = 3
char contained

contained = BinaryFeatures . IsBLOBContained(blobList, blobImage, blobIndex)
parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.

parameter3: the 1 based index for one of the BLOB whose feature is to be determined.

This API will return whether a BLOB is contained in another or not.

If the user wants to determine whether a BLOB is touching another, FOIL provides the user with
IsBLOBTouching api.

CBlobList blobList
unsigned long blobIndex1 = 1
unsigned long blobIndex2 = 5

touching = BinaryFeatures . IsBLOBTouching(blobList, blobIndex1, blobIndex2, FOIL::
NEIGHBORHOOD8);

parameter1: the blob list generated by the previous labeling operation.

Alacron Mvil User Manual

Page 96 of 100

parameter2: the 1 based index for one of the BLOB whose feature is to be determined.

parameter3: the 1 based index for one of the BLOB whose feature is to be determined.

parameter4: the type of neighborhood to be used to define BLOB touching.
This API will return whether a BLOB is touching another or not.

For the purpose of sorting the blobs in the blob list based on different criteria, FOIL provides the
user with SortBLOBs API.

CBlobList blobList
CBlobList sortedList
CImage<CGrayImage16, GRAY16> blobImage;

sortedList = BinaryFeatures . SortBLOBs (blobList, blobImage, FOIL:: DECREASING_AREA);

parameter1: the blob list generated by the previous labeling operation.
parameter2: the blob image generated by the previous labeling operation.
parameter3: the sort criteria to be applied.

This API will return the blob list sorted based on the specified criteria.

8 TROUBLESHOOTING
There are several things you can try before you call Alacron Technical Support for help.

_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure you didn’t miss a page or a section.

_____ Go back over the software installation to make sure you have installed all necessary
software.

_____ Run the Installation User Test to verify correct installation of both hardware and
software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the Alacron CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\alacron\alinfo

_____ Compile and run the example programs found in the directory: \usr\alacron\src\examples

_____ Find the appropriate section of the Programmer’s Guide & Reference or the Library
User’s Manual for the particular library and problem you are experiencing. Go back over
the steps in the guide.

_____ Check the programming examples supplied with the runtime software to see if you are
using the software according to the examples.

_____ Review the return status from functions and any input arguments.

Alacron Mvil User Manual

Page 97 of 100

_____ Simplify the program as much as possible until you can isolate the problem. Turning off
any operations not directly related may help isolate the problem.

_____ Finally, first save your original work. Then remove any extraneous code that doesn’t
directly contribute to the problem or failure.

9 ALACRON TECHNICAL SUPPORT
Alacron offers technical support to any licensed user during the normal business hours of 9 a.m.
to 5 p.m. EST. We offer assistance on all aspects of processor board and PMC installation and
operation.

9.1 Contacting Technical Support

To speak with a Technical Support Representative on the telephone, call the number below and
ask for Technical Support:

Telephone: 603-891-2750

If you would rather FAX a written description of the problem, make sure you address the FAX to
Technical Support and send it to:

Fax: 603-891-2745

You can email a description of the problem to support@alacron.com

Before you contact technical support have the following information ready:

_____ Serial numbers and hardware revision numbers of all of your boards. This

information is written on the invoice that was shipped with your products.
_____ Also, each board has its serial number and revision number written on

either in ink or in bar-code form.
_____ The version of the ALRT, ALFAST, or FASTLIB software that you are

using.
_____ You can find this information in a file in the directory: \usr\alfast\alinfo
_____ The type and version of the host operating system, i.e., Windows 98.

Alacron Mvil User Manual

Page 98 of 100

_____ Note the types and numbers of all your software revisions, daughter card
libraries, the application library and the compiler

_____ The piece of code that exhibits the problem, if applicable. If you email
Alacron the piece of code, our Technical-Support team can try to
reproduce the error. It is necessary, though, for all the information listed
above to be included, so Technical Support can duplicate your hardware
and system environment.

9.2 Returning Products for Repair or Replacements

Our first concern is that you be pleased with your Alacron products.

If, after trying everything you can do yourself, and after contacting Alacron Technical Support,
you feel your hardware or software is not functioning properly, you can return the product to
Alacron for service or replacement. Service or replacement may be covered by your warranty,
depending upon your warranty.The first step is to call Alacron and request a “Return Materials
Authorization” (RMA) number.This is the number assigned both to your returning product and to
all records of your communications with Technical Support. When an Alacron technician
receives your returned hardware or software he will match its RMA number to the on-file
information you have given us, so he can solve the problem you’ve cited.

When calling for an RMA number, please have the following information ready:

_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications, daughter
cards, etc.

_____ A clear and detailed description of the problem and when it occurs

_____ Exact code that will cause the failure

_____ A description of any environmental condition that can cause the problem

All of this information will be logged into the RMA report so it’s there for the technician when
your product arrives at Alacron.Put boards inside their anti-static protective bags. Then pack the
product(s) securely in the original shipping materials, if possible, and ship to:

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Clearly mark the outside of your package:

Attention RMA #80XXX

Remember to include your return address and the name and number of the person who should be
contacted if we have questions.

Alacron Mvil User Manual

Page 99 of 100

9.3 Reporting Bugs

We at Alacron are continually improving our products to ensure the success of your projects. In
addition to ongoing improvements, every Alacron product is put through extensive and varied
testing. Even so, occasionally situations can come up in the fields that were not encountered
during our testing at Alacron.

If you encounter a software or hardware problem or anomaly, please contact us immediately for
assistance. If a fix is not available right away, often we can devise a work-around that allows you
to move forward with your project while we continue to work on the problem you’ve
encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help if
you create a stand-alone code module that is isolated from your application and yet clearly
demonstrates the anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@alacron.com

We will compile and run the module to track down the anomaly you’ve found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the code
to a disk, describe the error, and mail the disk to Technical Support at the Alacron address below.

If the code is small enough, you can also:

FAX the code module to us at 603-891-2745

If you are faxing the code, write everything large and legibly and remember to include your
description of the error.

When you are describing a software problem, include revision numbers of all associated software.

For documentation errors, photocopy the passages in question, mark on the page the number and
title of the manual, and either FAX or mail the photocopy to Alacron.

Remember to include the name and telephone number of the person we should contact if we have
questions.

Alacron Mvil User Manual

Page 100 of 100

Alacron Inc.
71 Spit Brook Road, Suite 200

Nashua, NH 03060
USA

Telephone: 603-891-2750

FAX: 603-891-2745

Web site:
http://www.alacron.com/

Electronic Mail:

sales@alacron.com
support@alacron.com

